LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER – APRIL 2018

16PMT4MC02- NUMERICAL METHODS USING C++

Date: 20-04-2018 Time: 01:00-04:00	Dept. No.		Max. : 100 Marks
Answer all the questions. Each que	estion carries 2	20 marks.	
I a)1) Find the real root of the equa OR	ation $x^3 + x^2 - $	1 = 0 by iteration method.	
a)2) Find an iterative formula to fin	nd square root	t of N.	(5)
b)1) Solve sin $x = 1 + x^3$ using New b)2) Find the root of the equation x	$x \text{ ton-Raphson} \\ x e^x = 3 \text{ by fal}$	method. se position method correct	to three decimal places
OR c) Find the root of the equation x^3 .	$-x - 11 = 0 \cos \theta$	prrect to four decimal places	s using bisection method.
II a)1) Solve the system of equatio elimination method. OR	n 3x + y - z =	= 3, 2x - 8y + z = -5 and x	-2y + 9z = 8 using gauss
a)2) How does Gauss Seidel methb) Solve the system using Triangul	od differ from larisation met	n Gauss elimination method hod	(5)
3x + y + 2z = 16, $2x - 6y + 8z = 24OR$	4 and $5x - 4y$	-3z = 2	
c) Solve the following equations by $8x - 3y + 2z = 20$	y Gauss Seide	el method method.	
6x + 3y + 12z = 35 4x + 11y - z = 33			(15)
III a)1) Find the cubic polynomial	which takes t	the following values	

Х	1	3	5	7	9	11
У	3	14	19	21	23	28

OR

a)2) The following table gives the normal weight of a baby during the six months of life:

Age in months	0	2	3	5	6
Weight in Kgs	5	7	8	10	12

b) Using Gauss's forward formula find the value of log 337.5

X	310	320	330	340	350	360	
log x	2.4914	2.5051	2.5185	2.5315	2.5441	2.5563	(15)

(5)

c)1) Apply Stirling's formula to find y 35 given that $y_{10} = 600$; $y_{20} = 512$; $y_{30} = 439$; $y_{40} = 346$ and $y_{50} = 243$ c)2) Apply Bessel's formula to find y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$ (8+7)IV a)1) How will you refine your answer while using Trapezoidal rule. OR a)2) When will you apply Simpson's one - third rule and three by eighth rule? (5) b) Evaluate the $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Trapezoidal rule i. Simpson's 1/3 rule ii. Simpson's 3/8 rule iii.

iv. Weddle's rule

OR

c) From the following table, find the value of x and y and obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2

х	1.0	1.2	1.4	1.6	1.8	2.0	2.2	
У	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250	

V a)1) State Gregory –Newton's formula for unequal intervals.

OR

a)2) State Lagranges formula for unequal intervals.

b) Solve $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 in the range $0 \le x \le 0.2$ using (i) Euler's method (ii) Improved Euler's

method and (iii) Modified Euler's method.

OR

c) Given $y' = x^2 - y$, y(0) = 1, find y(0.1), y(0.2) using Runge-Kutta methods of (i) second order and (ii) third order. (15)

\$\$\$\$\$\$\$

(15)

(15)

(5)