LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER - APRIL 2018
16PMT4MCO2- NUMERICAL METHODS USING C++

Date: 20-04-2018
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

Answer all the questions. Each question carries 20 marks.
I a)1) Find the real root of the equation $x^{3}+x^{2}-1=0$ by iteration method.
OR
a)2) Find an iterative formula to find square root of N .
b)1) Solve $\sin x=1+x^{3}$ using Newton-Raphson method.
b)2) Find the root of the equation $\mathrm{xe}^{\mathrm{x}}=3$ by false position method correct to three decimal places. .
(6+9)
OR
c) Find the root of the equation $x^{3}-x-11=0$ correct to four decimal places using bisection method.

II a)1) Solve the system of equation $3 x+y-z=3,2 x-8 y+z=-5$ and $x-2 y+9 z=8$ using gauss elimination method.
OR
a)2) How does Gauss Seidel method differ from Gauss elimination method
b) Solve the system using Triangularisation method
$3 x+y+2 z=16,2 x-6 y+8 z=24$ and $5 x-4 y-3 z=2$
OR
c) Solve the following equations by Gauss Seidel method method.
$8 x-3 y+2 z=20$
$6 x+3 y+12 z=35$
$4 x+11 y-z=33$
III a)1) Find the cubic polynomial which takes the following values

x	1	3	5	7	9	11
y	3	14	19	21	23	28

OR
a)2) The following table gives the normal weight of a baby during the six months of life:

Age in months	0	2	3	5	6
Weight in Kgs	5	7	8	10	12

b) Using Gauss's forward formula find the value of $\log 337.5$

x	310	320	330	340	350	360
$\log \mathrm{x}$	2.4914	2.5051	2.5185	2.5315	2.5441	2.5563

c)1) Apply Stirling's formula to find y_{35} given that $y_{10}=600 ; y_{20}=512 ; y_{30}=439 ; y_{40}=346$ and $y_{50}=243$
c)2) Apply Bessel's formula to find y_{25} given that $\mathrm{y}_{20}=2854, \mathrm{y}_{24}=3162, \mathrm{y}_{28}=3544$, $\mathrm{y}_{32}=3992$

IV a)1) How will you refine your answer while using Trapezoidal rule.
OR
a)2) When will you apply Simpson's one - third rule and three by eighth rule?
b) Evaluate the $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using
i. Trapezoidal rule
ii. Simpson's $1 / 3$ rule
iii. Simpson's $3 / 8$ rule
iv. Weddle's rule

OR
c) From the following table, find the value of x and y and obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1.2$

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

V a)1) State Gregory -Newton's formula for unequal intervals.
OR
a)2) State Lagranges formula for unequal intervals.
b) Solve $\frac{d y}{d x}=y-\frac{2 x}{y}, \mathrm{y}(0)=1$ in the range $0 \leq \mathrm{x} \leq 0.2$ using (i) Euler's method (ii) Improved Euler's method and (iii) Modified Euler's method.
OR
c) Given $y^{\prime}=x^{2}-y, y(0)=1$, find $y(0.1), y(0.2)$ using Runge-Kutta methods of (i) second order and (ii) third order.

