LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER - APRIL 2018

16PMT4MC04- CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS

Date: 23-04-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer ALL Questions:

1. a) Write short note on Iterated kernel and reciprocal kernel.

OR
b) Show that the function $y(x)=x e^{x}$ is a solution of the volterra integral equation $y(x)=\sin x+$ $2 \int_{0}^{x} \cos (x-t) y(t) d t$.
c) Derive the general solution of homogeneous Fredholm integral equation of the second kind with separable kernel.

OR
d) Determine the eigen values and eigen function of the homogeneous integral equation $y(x)=\lambda \int_{0}^{1} \mathrm{~K}(x+t) y(t) d t$, where $K(x, t)\left\{\begin{array}{l}t(x+1), 0 \leq x \leq t, \\ x(t+1), t \leq x \leq 1 .\end{array}\right.$
2. a) Solve $y(x)=\cos x+\lambda \int_{0}^{\pi} \sin x y(t) d t$ using Fredholm integral equation of the second kind

OR

b) Invert the integral equation $y(x)=f(x)+\lambda \int_{0}^{2 \pi}(\sin x \cos t) y(t) d t$.
c) Show that the integral equation $y(x)=f(x)+\frac{1}{\pi} \int_{0}^{2 \pi} \sin (x+t) y(t) d t$ possesses no solution for $f(x)=x$, but that it possesses infinitely many solutions when $f(x)=1$.

OR
d) State and prove Fredholm alternative theorem.
d. a) Find the resolvent kernel of the Volterra integral equation with the kernel
$k(x, t)=1$

OR

b) Find the resolvent kernels for the Fredholm integral equation $k(x, t)=(1+x)(1-t), a=-1, b=1$.
c) State and prove Hilbert-Schmidt theorem.

OR
d) Find the solution of Fredholm integral equation of the second kind by (i) successive approximation (ii) Iterative method and (iii) Neumann series.
d. a) Write a short note on proximity of curves.

OR
b) Find the extremum of the function $\int_{x_{0}}^{x_{1}} \frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{\frac{1}{2}}}{x} d x$.
c) (i) State and prove Euler's equation.
(ii) If the functional $I[y(x)]$ attains a maximum or minimum on $y=y_{0}(x)$, where the functional belongs to a certain class, then show that at $y=y_{0}(x), \delta I=0 .(10+5)$

OR
d) (i) Test for an extremum the functional $I[y(x)]=\int_{0}^{1}\left(x y+y^{2}-2 y^{2} y^{\prime}\right) d x$, $y(0)=1, y(1)=2$.
(ii) Derive the variation problem of parametric form.
5. a) Derive Field of Extremals

OR
b) Give a brief writing on Legendre Condition.
c) Derive the Transversality condition and Find the shortest distance between the parabola $y=x^{2}$ and the straight line $x-y=5$.

OR
d) Explain in detail the variation problem with a movable boundary for a functional dependent on two functions.

