LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **MATHEMATICS**

FOURTHSEMESTER – APRIL 2018

16PMT4MC05- CLASSICAL MECHANICS

		_		_	
Date: 25-04-2 Time: 09:00-1		Dept. No.		Max. : 100	Marks
		А	nswer ALL questions:		
1. (a) State and	prove D'Alemb	ert's principle			(5)
1. (a) State and	prove D Alemo	ert s principie.	(OR)		(5)
(b) Find the equat Lagrange's equ		-	5)		
(c) State and prov	e Lagrange's equa	ations in holonom	nic system.	(15)	
			(OR)		
(d) A particle of m	hass m moves in a	a conservative for	ce field. Find the Lagrangia	n and	
the equations	the equations of motion in cylindrical coordinates $(ho, arphi, z)$.				
2. (a) Obtain the	Hamilton's equa	tion of motion fo	r a projectile assuming that	the axes are attach	ed
to the earth.					
(b) Derive the Han	nilton's principle	(OR from the Lagrang) e's equation of motion.	(5)	
(b) Derive the har			e s'equation of motion.	(5)	
(c) State and prov	e Rouths' Proced		-1	(15)	
(d) State and prov	e the conservatio	OF In theorem for lin	R) ear momentum in Lagrangia	an formulation.	
(a) state and prot				(15)	
3. (a) With usua	al notations prov	ve the following:	:		
(i)	$[u,v]_{q,p} = -[$	$[v,u]_{q,p}$			
(ii)	$[u,u]_{q,p} = [v]$	$[v]_{q,p}=0.$			
(iii)	[u+v,w] =	[u,w]+[v,w].		(5)	
		(0)	R)		
(b) Show that the	transformation P	$e = \sqrt{2q}e^{-\alpha}\sin p$	$Q, Q = \sqrt{2q}e^{lpha}\cos p$ is can	onical. (5)	
(c) State and prove principle of Least action.				(15)	
(OR) (d) State and prove Poincare theorem.				(15)	
(a) Eind the	volation hotwar	infinitacimal	ntaat transformation and	Doisson huselest	(5)
4. (a) Find the r	ciation between	infinitesimal co	ontact transformation and	r dissoli dracket.	(5)
(b) Derive Hamilton-Jacobi equation.				(5)	
(c) Define Deisser	bracket of two	lunamical variable	as Show that far three such	a variables as as to t	ha lacahi idantitu
[u, [v, w]] + [v, [u]]		·	es. Show that for three such I. (15)	u, v, w	ne Jacobi luentity:
(OR)					
(d) State and prov	e Liouville's theo	rem in phase spac	ce.	(15)	

5. (a) If $\{u_l, u_i\}$ is a Lagrange bracket and $[u_l, u_j]$ is a Poisson bracket, then prove that $\sum_{l=1}^{2n} \{u_l, u_i\} [u_l, u_j] = \delta_{ij}$.	5)					
(OR)						
(b) Write short note on Action and Angle variables.	(5)					
(c) Solve the problem of one dimensional Harmonic oscillator, where the Hamiltonian is given						
by $H = \frac{p^2}{2m} + \frac{1}{2}Kq^2$. (1)	15)					
(OR)						
(d)UsingHamilton-Jacobi's equation, solve the Kepler's problem for the Hamiltonian given	ıby					
$H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] - \frac{\lambda}{r}.$	15)					

\$\$\$\$\$\$