LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER - APRIL 2018
16PMT4MC05- CLASSICAL MECHANICS

Date: 25-04-2018
Time: 09:00-12:00
\square Max. : 100 Marks
Dept. No.

Answer ALL questions:

1. (a) State and prove D'Alembert's principle.
(OR)
(b) Find the equation of motion for simple pendulum of length l and mass m by using Lagrange's equations.
(c) State and prove Lagrange's equations in holonomic system.

(OR)

(d) A particle of mass m moves in a conservative force field. Find the Lagrangian and the equations of motion in cylindrical coordinates (ρ, φ, z).
2. (a) Obtain the Hamilton's equation of motion for a projectile assuming that the axes are attached to the earth.
(5)
(OR)
(b) Derive the Hamilton's principle from the Lagrange's equation of motion.
(c) State and prove Rouths' Procedure.
(OR)
(d) State and prove the conservation theorem for linear momentum in Lagrangian formulation.
(15)
3. (a) With usual notations prove the following:
(i) $[u, v]_{q, p}=-[v, u]_{q, p}$
(ii) $[u, u]_{q, p}=[v, v]_{q, p}=0$.
(iii) $[u+v, w]=[u, w]+[v, w]$.
(OR)
(b) Show that the transformation $P=\sqrt{2 q} e^{-\alpha} \sin p, Q=\sqrt{2 q} e^{\alpha} \cos p$ is canonical.
(c) State and prove principle of Least action.
(d) State and prove Poincare theorem.
4. (a) Find the relation between infinitesimal contact transformation and Poisson bracket.
(OR)
(b) Derive Hamilton-Jacobi equation.
(5)
(c) Define Poisson bracket of two dynamical variables. Show that for three such variables u, v, w the Jacobi identity: $[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0$ is satisfied.
(15)
(OR)
(d) State and prove Liouville's theorem in phase space.
5. (a) If $\left\{u_{l}, u_{i}\right\}$ is a Lagrange bracket and $\left[u_{l}, u_{j}\right]$ is a Poisson bracket, then prove that $\sum_{l=1}^{2 n}\left\{u_{l}, u_{i}\right\}\left[u_{l}, u_{j}\right]=\delta_{i j}$.
(b) Write short note on Action and Angle variables.
(c) Solve the problem of one dimensional Harmonic oscillator, where the Hamiltonian is given by $H=\frac{p^{2}}{2 m}+\frac{1}{2} K q^{2}$.
(15)
(OR)
(d)UsingHamilton-Jacobi's equation, solve the Kepler's problem for the Hamiltonian given by $H=\frac{1}{2 m}\left[p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right]-\frac{\lambda}{r}$.

\$ $\$ \mathbf{\$} \$ \$ \$$

