

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Com.DEGREE EXAMINATION - COMMERCE

THIRDSEMESTER - APRIL 2018

16UMT3AL01- BUSINESS MATHEMATICAL TECHNIQUE

Date: 03-05-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART – A

Answer ALL questions

 $(10 \times 2 = 20)$

- 1. Find the derivative of $\log (\sqrt{3x+4})$.
- 2. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ when $u(x, y) = 4x^2 + 9xy 5y^2$.
- 3. Evaluate $\int (3-2x-x^4) dx$.
- 4. Define Producer surplus.
- 5. Define optimal feasible solution of linear programming problem.
- 6. Write the dual of the fellowing LPP

$$Maximize Z = x_1 - x_2 + 3x_3$$

Subject to constraints

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - x_2 - x_3 \le 2$$

$$2x_1 - 2x_2 - 3x_3 \le 6$$
, $x_1, x_2, x_3 \ge 0$

- 7. What is the transportation problem?
- 8. Define Non- degenerate basic feasible solution.
- 9. Define project in network analysis.
- 10. Define critical path in network.

PART - B

Answer any FIVE questions

 $(5 \times 8 = 40)$

11. If
$$y = (x + \sqrt{1 + x^2})^m$$
, show that $(1 + x^2)y_2 + xy_1 = m^2y$.

- 12. Find the maximum and minima of the function $2x^3 + 3x^2 36x + 10$.
- 13. Evaluate $\int \frac{(2x+3)dx}{x^2+x+1}$.
- 14. Solve the following L.P.P by the graphical method

$$\operatorname{Max} Z = 3x_1 + 4x_2$$

Subject to constraints

$$x_1 + x_2 \leq 450$$

$$x_1 + x_2 \le 600$$

and
$$x_1, x_2 \geq 0$$

- 15. Determine Consumer surplus and producer surplus under pure competition for the demand function $p = 36 x^2$ and supply function $p = 6 \frac{x^2}{4}$, where p is the price and x is quantity.
- 16. Consider the problem of assigning four job to four persons. The assignment cost are

given as follows:

Find the optimal assignment by Hungarian method.

17. Draw the network for the project whose activity and relationship are given below:

Activity	A	В	С	D	Е	F	G	Н	I
Predecessor	_	A	A	_	D	B,C,E	F	E	G,H

18. Find initial transportation cost of the following matrix using north west corner method and least cost method

Available

1 2 1 15 3 3 2 1 20 40 30 10 15 2 5 9

Demand

20 **PART – C**

30

50

Answer any TWO question

$$(2 \times 20 = 40)$$

19. a) Find the maximum and minima of the function $u(x,y) = 2(x^2 - y^2) - x^4 + y^4$.

b) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}}}{(\sin x)^{\frac{3}{2}} + (\cos x)^{\frac{3}{2}}} dx$$
. (14 + 6)

20. Using simplex method to solve the liner programming problem

Maximize
$$Z=4x_1+10x_2$$

Subject to constraints
$$2x_1+x_2 \le 50$$

$$2x_1+5x_3 \le 100$$

$$2x_1+3x_2 \le 90$$
 and $x_1,x_2\ge 0$

- 21. Construct network for the project whose activities and the three time estimate of there activities (in weeks) are given below. Compute
 - a) Expected duration of each activity
 - b) Expected variance of each activity and also fine the critical path of the project and the expected project duration.

Activity	1- 2	2-3	2-4	3-5	4-5	4-6	5-6	6-7	7-8	7-9	8-10	9-10
t _o	3	1	2	3	1	3	4	6	2	1	4	3
t _m	4	2	3	4	3	5	5	7	4	2	6	5
t_p	5	3	4	5	5	7	6	8	6	3	8	7

22. Find the optimal transportation cost of the following matrix using vogals method for the critical solution.

Origin/Distribution	D_1	D_2	D_3	D_4	Availability
S_1	11	13	17	14	250
S ₂	16	18	14	10	300
S_3	21	24	13	10	400
Requirement	200	225	275	250	950

\$\$\$\$\$\$\$\$\$