LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - APRIL 2018

6UMT3MC02- VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 07-05-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

PART - A

Answer ALL Questions:

 $10 \times 2 = 20$

- 1. If $\emptyset(x, y, z) = x^2y + y^2x + z^2$ find $\nabla \emptyset$ at the point (1,1,1).
- 2. Prove that $\operatorname{div} \vec{r} = 3$ and $\operatorname{curl} \vec{r} = 0$ where \vec{r} is the position vector of the point (x, y, z).
- 3. Show that $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative vector field.
- 4. If $\vec{F} = 3xy\vec{i} y^2\vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ where *C* is the curve on the *xy* plane $y = 2x^2$ from (0,0)to (1,2).
- 5. State Green's theorem in plane.
- 6. State Stoke's theorem.
- 7. Solve $\frac{dy}{dx} + \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} = 0$.
- 8. Find the general solution of $y = xp + \frac{a}{p}$.
- 9. Solve $(D^2 4D + 3)y = 0$.
- 10. Find the particular integral of $(D^2 6D + 9)y = e^{3x}$.

PART - B

Answer ANY FIVE Questions:

$$5 \times 8 = 40$$

11. If
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
 and $|\vec{r}| = r$, prove that (i) $\nabla r = \frac{\vec{r}}{r}$ (ii) $\nabla(\log r) = \frac{\vec{r}}{r^2}$.

12. Find the maximum value of the directional derivative of the function

$$\emptyset = 2x^2 + 3y^2 + 5z^2$$
 at the point $(1,1,-4)$.

13. Evaluate $\iint_S \vec{F} \cdot \vec{n} ds$ where $\vec{F} = z\vec{i} + x\vec{j} - y^2z\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 1$ included in the first octant between z = 0 and z = 2.

14. Evaluate $\int_C (x^2 + y^2 + z^2) ds$, where C is the arc of the circular helix

$$x = 3cost, y = 3sint, z = 4t \text{from} A(3,0,0) \text{ to } B(3,0,8\pi).$$

15. By Green's theorem, find the value of $\int_C (x^2 y dx + y dy)$ along the closed curve C formed by

$$y^2 = x$$
 and $y = x$ between (0,0) and (1,1).

16. Solve
$$xdy - ydx = \sqrt{x^2 + y^2}dx$$
.

17. Solve
$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$
.

18. Solve
$$(D^2 - 8D + 9)y = 8\sin 5x$$
.

PART - C

Answer ANY TWO Questions:

$$2 \times 20 = 40$$

- 19. a) Prove that for any vector \vec{A} , $\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) \nabla^2 \cdot \vec{A}$
 - b) Evaluate $\iiint_V \vec{F} dV$ if $\vec{F} = 2xz\vec{i} x\vec{j} + y^2\vec{k}$ and V is the volume enclosed by the cylinder $x^2 + y^2 = a^2$ between the planes z = 0 and z = c. (10+10)
- 20. Verify the Gauss Divergence theorem for the function $\vec{F} = 2xz\vec{\imath} + yz\vec{\jmath} + z^2\vec{k}$ taken over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$

21. a) Solve
$$\frac{dy}{dx} + y\cos x = \frac{1}{2}\sin 2x$$
.

b) Solve
$$x^2p^2 + 3xyp + 2y^2 = 0$$
. (8+12)

22. a) Solve $(D^2 + 4)y = x \sin x$.

b) Solve
$$x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$$
. (8+12)
