LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - APRIL 2018
16UMT3MC02- VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 07-05-2018
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A
Answer ALL Questions:
$10 \times 2=20$

1. If $\emptyset(x, y, z)=x^{2} y+y^{2} x+z^{2}$ find $\nabla \emptyset$ at the point $(1,1,1)$.
2. Prove that $\operatorname{div} \vec{r}=3$ and $\operatorname{curl} \vec{r}=0$ where \vec{r} is the position vector of the point (x, y, z).
3. Show that $\vec{F}=\left(2 x y+z^{3}\right) \vec{\imath}+x^{2} \vec{\jmath}+3 x z^{2} \vec{k}$ is a conservative vector field.
4. If $\vec{F}=3 x y \vec{\imath}-y^{2} \vec{\jmath}$, evaluate $\int_{C} \vec{F} . d \vec{r}$ where C is the curve on the $x y$ plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
5. State Green's theorem in plane.
6. State Stoke's theorem.
7. Solve $\frac{d y}{d x}+\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}=0$.
8. Find the general solution of $y=x p+\frac{a}{p}$.
9. Solve $\left(D^{2}-4 D+3\right) y=0$.
10. Find the particular integral of $\left(D^{2}-6 D+9\right) y=e^{3 x}$.

PART - B

Answer ANY FIVE Questions: $5 \times 8=40$
11.If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $|\vec{r}|=r$, prove that (i) $\nabla r=\frac{\vec{r}}{r}$
(ii) $\nabla(\log r)=\frac{\vec{r}}{r^{2}}$.
12. Find the maximum value of the directional derivative of the function $\emptyset=2 x^{2}+3 y^{2}+5 z^{2}$ at the point $(1,1,-4)$.
13. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=z \vec{\imath}+x \vec{\jmath}-y^{2} z \vec{k}$ and S is the surface of the cylinder $x^{2}+$ $\mathrm{y}^{2}=1$ included in the first octant between $z=0$ and $z=2$.
14. Evaluate $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$, where C is the arc of the circular helix
$x=3 \cos t, y=3 \sin t, z=4 t$ from $A(3,0,0)$ to $B(3,0,8 \pi)$.
15. By Green's theorem, find the value of $\int_{C}\left(x^{2} y d x+y d y\right)$ along the closed curve C formed by $y^{2}=x$ and $y=x$ between $(0,0)$ and $(1,1)$.
16. Solve $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.
17. Solve $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$.
18. Solve $\left(D^{2}-8 D+9\right) y=8 \sin 5 x$.

PART - C

Answer ANY TWO Questions:

$$
2 \times 20=40
$$

19. a) Prove that for any vector $\vec{A}, \nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \cdot \vec{A}$
b) Evaluate $\iiint_{V} \vec{F} d V$ if $\vec{F}=2 x z \vec{\imath}-x \vec{\jmath}+y^{2} \vec{k}$ and V is the volume enclosed by the cylinder $x^{2}+y^{2}=a^{2}$ between the planes $z=0$ and $z=c$.
20. Verify the Gauss Divergence theorem for the function $\vec{F}=2 x z \vec{\imath}+y z \vec{\jmath}+z^{2} \vec{k}$ taken over the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
21. a) Solve $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$.
b) Solve $x^{2} p^{2}+3 x y p+2 y^{2}=0$.
22. a) Solve $\left(D^{2}+4\right) y=x \sin x$.
b) Solve $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x+\log x$.
