LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - APRIL 2018
17PMT1MC02- REAL ANALYSIS

Date: 24-04-2018
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00
Answerallquestions.All questions carry equal marks

1. (a) (i) State and prove mean value theorem.

OR
(ii) If f is a real valued function defined on $[a, b]$, f has local maximum at a point $x \in[a, b]$ and $f^{\prime}(x)$ exists, then prove that $f^{\prime}(x)=0$.
(b) (i) Suppose f is continuous on $[a, b], f^{\prime}(x)$ exists at some point.$x \in[a, b]$, g is defined on an interval I which contains the range of f and g is differentiable at the point $\mathrm{f}(\mathrm{x})$. If $h(t)=$ $g(f(t)), a \leq t \leq b$, then prove that h is differentiable at x and $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$.
(9 marks)
(ii) If f is a continuous mapping of a metric space X into a metric space Y and E is a connected subset of X, then prove that $f(E)$ is connected.
(6 marks)
OR
(c) (i) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y .
(7 marks)
(ii) Suppose f is a real differentiable function on $[\mathrm{a}, \mathrm{b}]$ and suppose $f^{\prime}(a)<\lambda<$ $f^{\prime}(b)$. Prove that there is a point $\mathrm{x} \in(a, b)$ such that $f^{\prime}(x)=\lambda$.
2. (a) (i) Define a refinement of a partition P . If P^{*} is a refinement of P then prove that $L(P, f, \propto) \leq$ $L\left(P^{*}, f, \propto\right)$ and $U\left(P^{*}, f, \propto\right) \leq U(P, f, \propto)$.

OR
(ii) If $f \in \mathfrak{R}(\alpha)$ and $g \in \mathfrak{R}(\alpha)$ on [a, b], then prove that $|f| \in \Re(\alpha)$ and $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$.
(5 marks)
(b) State and prove a necessary and sufficient conditions for a bounded real valued function to be a Riemann-Steiltjesintegrable.
(15 marks)
OR
(c) (i) State and prove the theorem on Integration by parts.
(ii) If f is a real continuously differentiable function on $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=0$ and $\int_{a}^{b} f^{2}(x) d x=$ 1, then prove that $\int_{a}^{b} x f(x) f^{\prime}(x) d x=-\frac{1}{2}$
3. (a) (i) Prove that for $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, 0 \leq x \leq 1, n=1,2 \ldots, \quad \int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x \neq$ $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.

OR

(ii) Suppose $\left\{f_{n}\right\}$ is a sequence of functions on a set E and $\left|f_{n}(x)\right| \leq M_{n}, x \in E, n=1,2 \ldots$ then prove that $\sum f_{n}$ converges uniformly on E if $\sum M_{n}$ Converges.
(b) If $\left\{f_{n}\right\}$ is a sequence of continuous functions on a set E and if $f_{n} \rightarrow f$ uniformly on E , then prove that f is continuous on E.

OR

(c) State and prove the Stone-Weierstrass theorem.
4. (a) (i) State and prove the Bessel's Inequality and hence derive the Parseval's formula.

OR
(ii) State and prove the Riesz-Fischer theorem.
(b) State and prove the Riemann-Lebesgue lemma and use the lemma to prove the following:

For $f \in L(-\infty,+\infty), \lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} f(t) \frac{1-\cos \alpha t}{t} d t=\int_{0}^{\infty} \frac{f(t)-f(-t)}{t} d t$.
(15 marks)

OR

(c) (i) If g is of bounded variation on $[0, \delta]$, then prove that

$$
\lim _{\alpha \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta} g(t) \frac{\sin \alpha t}{t} d t=g(0+)
$$

(ii) If $f \in L[0,2 \pi]$, f is periodic with period 2π and $\left\{s_{n}\right\}$ is a sequence of partial sums of Fourier series generated by $\mathrm{f}, s_{n}=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)$,
$n=1,2$...then prove that $s_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \frac{f(x+t)+f(x-t)}{2} D_{n}(t) d t$
5. (a) (i) State and prove the fixed point theorem.

OR

(ii) If Ω is the set of all invertible linear operators on R^{n} and for $A \in \Omega, B \in L\left(R^{n}\right)$, if $\| B-$ $A\left\|\left\|A^{-1}\right\|<1\right.$, then prove that $B \in \Omega$.
(b) State and prove the inverse function theorem.

OR
(c) State and prove the implicit function theorem.

