LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **MATHEMATICS**

FIRSTSEMESTER – APRIL 2018

17PMT1MC04- COMPUTER ALGORITHMS

		1
Date: 30-04-2018 Dept. No. Time: 09:00-12:00		Max. : 100 Marks
Answer ALL the questions. Each question c	arries equal marks.	
1. a) If S is a set of n elements, the <i>powerset</i> of S is the set of all possible subsets of S. Write a recursive		
algorithm to compute the power set of S		(5)
	OR	
b) Give procedure SEARCH to search for an element x in an array $A(1:n)$ and return t if $a(t) = x$ and zero		
otherwise.		(5)
c) Describe a Binary Search Tree. Write an algorithm to search an element with key x by recursive		
search method in a Binary Search Tree.		(15)
	OR	
d) Give HEAPSORT to sort numbers in an	array. Simulate it on	
A(1:6) = (14, 17, 25, 12, 13, 17).		(15)
2. a) Calculate the time complexity of divide and conquer algorithm for $a = 1$, $b = 2$, $f(n) = cn$ using		
recurrence relation.		(5)
	OR	
b) State the algorithm to find the k^{th} smalles	st element.	(5)
a) State algorithm Manageont Simulate it a	n A(1, 7) = (45, 24, 27, 15)	70 82 12) (15)
c) State algorithm MergeSort. Simulate it o		70, 82, 12). (15)
d) Cive presedure PINSPCH and simulate	OR $(1:10) = (21, 26, 44)$	5 70 75 82 00 05 100 110)
d) Give procedure BINSRCH and simulate when $x = 46$ and $x = 82$. Draw the binary		
when $x = 40$ and $x = 62$. Draw the officiary	decision tree when $n = 10$.	(15)
3. a) Give an algorithm to generate a 2-way m	erge tree.	(5)
	OR	
b) Explain optimal storage on tapes with a		(5)
c) State procedure GREEDY-KNAPSACK		
$n = 7, m = 15, (p_1, p_2 \dots p_7) = (10, 5, 15, 15)$	-	
· · · · · · · · · · · · · · · · · · ·	(15)	
	OR	
d) Write algorithm JS. What is the solution $(p_1, p_2 \dots p_5) = (20, 15, 10, 5, 1), (d_1, d_2)$	generated by the function J	S when $n = 5$, (15)

4. a) Apply backtracking method, to find a solution to 4-queens problem.	(5)		
OR			
b) Explain depth first search traversal with an example.	(5)		
c) Give the procedure for general iterative and recursive backtracking method.	(15)		
OR			
d) State algorithm SumOfSub. Let $n = 6$, $m = 30$, simulate SumOfSub on the data $w = \{5, 10, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 14, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14$			
18}. (15)			
5. a) Describe a satisfiabilityproblem.	(5)		
OR			
b) Write a nondeterministic sorting algorithm. Also calculate the time complexity. (5)			
c) Explain node cover decision problem with an example. Also prove that the node cover decision			
problem is NP-Complete. (15)			
OR			
d) Illustrate maximum clique problem with an example. Prove that CNF-satisfiability reduces to clique			
decision problem. (15)			
