LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - APRIL 2018

17PMT1MC04- COMPUTER ALGORITHMS

Date: 30-04-2018 \square Max. : 100 Marks
Time: 09:00-12:00

Answer ALL the questions. Each question carries equal marks.

1. a) If S is a set of n elements, the powerset of S is the set of all possible subsets of S. Write a recursive algorithm to compute the power set of S.

OR
b) Give procedure SEARCH to search for an element x in an array $A(1: n)$ and return t if $a(t)=x$ and zero otherwise.
c) Describe a Binary Search Tree. Write an algorithm to search an element with key x by recursive search method in a Binary Search Tree.

OR
d) Give HEAPSORT to sort numbers in an array. Simulate it on $A(1: 6)=(14,17,25,12,13,17)$.
2. a) Calculate the time complexity of divide and conquer algorithm for $a=1, b=2, f(n)=c n \quad$ using recurrence relation.

OR
b) State the algorithm to find the $k^{\text {th }}$ smallest element.
c) State algorithm MergeSort. Simulate it on $A(1: 7)=(45,24,37,15,70,82,12)$.

OR
d) Give procedure BINSRCH and simulate it on $\mathrm{A}(1: 10)=(21,36,45,70,75,82,90,95,100,110)$ when $x=46$ and $x=82$. Draw the binary decision tree when $n=10$. (15)
3. a) Give an algorithm to generate a 2-way merge tree.

OR
b) Explain optimal storage on tapes with an example.
c) State procedure GREEDY-KNAPSACK. Find an optimal solution to the knapsack problem instance: $n=7, m=15,\left(p_{1}, p_{2} \ldots p_{7}\right)=(10,5,15,7,6,18,3),\left(w_{1}, w_{2} \ldots w_{7}\right)=(2,3,5,7,1,4,1)$.

OR
d) Write algorithm JS. What is the solution generated by the function JS when $n=5$, $\left(p_{1}, p_{2} \ldots p_{5}\right)=(20,15,10,5,1),\left(d_{1}, d_{2} \ldots d_{5}\right)=(2,2,1,3,3)$.
4. a) Apply backtracking method, to find a solution to 4-queens problem.

OR

b) Explain depth first search traversal with an example.
c) Give the procedure for general iterative and recursive backtracking method.

OR

d) State algorithm SumOfSub. Let $n=6, m=30$, simulate SumOfSub on the data $w=\{5,10,12,13,15$, 18\}.
5. a) Describe a satisfiabilityproblem.

OR

b) Write a nondeterministic sorting algorithm. Also calculate the time complexity.
c) Explain node cover decision problem with an example. Also prove that the node cover decision problem is NP-Complete.

OR

d) Illustrate maximum clique problem with an example. Prove that CNF-satisfiability reduces to clique decision problem.

