## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

**M.Sc.**DEGREE EXAMINATION – **MATHEMATICS** 

SECONDSEMESTER – APRIL 2018



d) Minimize the following automation.

| •                                                                                                                    |                                                                             |                         |         |          | _                           |         |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|---------|----------|-----------------------------|---------|--|
|                                                                                                                      |                                                                             |                         | 0       | 1        |                             |         |  |
|                                                                                                                      |                                                                             | $\rightarrow A$         | В       | А        | -                           |         |  |
|                                                                                                                      |                                                                             | В                       | А       | С        |                             |         |  |
|                                                                                                                      |                                                                             | C                       | D       | В        |                             |         |  |
|                                                                                                                      |                                                                             | * D                     | D       | Α        |                             |         |  |
|                                                                                                                      |                                                                             | E                       | D       | F        | _                           |         |  |
|                                                                                                                      |                                                                             | F                       | G       | E        | _                           |         |  |
|                                                                                                                      |                                                                             | G<br>U                  | F<br>C  | G        | -                           |         |  |
|                                                                                                                      |                                                                             | п                       | U       | D        |                             | (15)    |  |
| III a)                                                                                                               | Construc                                                                    | et a grar               | nmar to | genera   | te four digit odd integers. | (15)    |  |
| b) Define leftmost and rightmost derivations and give examples.                                                      |                                                                             |                         |         |          |                             | (5)     |  |
| c i)                                                                                                                 | ) The CFC                                                                   | 3 is give               | en by G | G = (V   | (T, P, E) where             |         |  |
| $V = \{E\}, T = \{id\}, P = \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow id\}.$ Prove that this grammar |                                                                             |                         |         |          |                             |         |  |
| is ambiguous.<br>ii) Write about Chomsky's hierarchy of languages. (7+)                                              |                                                                             |                         |         |          |                             | (7+8)   |  |
| [OR]<br>d i) Optimize the CEG given below S is the starting symbol                                                   |                                                                             |                         |         |          |                             |         |  |
| $S \rightarrow A/OC1 \ A \rightarrow B/O1/10 \ C \rightarrow \varepsilon/CD$                                         |                                                                             |                         |         |          |                             |         |  |
| ii) Write a context free grammar to generate the set of all palindromes over {a, b, c}                               |                                                                             |                         |         |          |                             |         |  |
|                                                                                                                      | Hence co                                                                    | onstruct                | an equ  | uivalent | CNF to generate the same.   | (7+8)   |  |
| IV a)                                                                                                                | Define a PDA and explain instantaneous descriptions.<br>[OR]                |                         |         |          |                             |         |  |
| b)                                                                                                                   | b) Eliminate $\varepsilon$ production from the CFG with production rules    |                         |         |          |                             |         |  |
| $S \rightarrow Z$                                                                                                    | $S \to XYX, X \to 0X/\varepsilon, Y \to 1Y/\varepsilon$ (5)                 |                         |         |          |                             |         |  |
| c) If a language L is accepted by a PDA A by empty stack then prove that there exist                                 |                                                                             |                         |         |          |                             |         |  |
|                                                                                                                      | a PDA B accepts the same language L by final state. (15)<br>[OR]            |                         |         |          |                             |         |  |
| d) Design a PDA to accept $L = \{wcw^R / w \in (0,1)^*\}$ by                                                         |                                                                             |                         |         |          |                             |         |  |
|                                                                                                                      | (1) Emp<br>(2) Final                                                        | ty stack<br>l state.    | ί.      |          |                             |         |  |
|                                                                                                                      | ~ /                                                                         |                         |         |          |                             | (9+6)   |  |
| V a)                                                                                                                 | V a) Define a Turing Machine and discuss about moves of the Turing Machine. |                         |         |          |                             |         |  |
| b)                                                                                                                   | b) Write a short note on multiple tracks Turing Machines . (5)              |                         |         |          |                             |         |  |
| c) Design a TM to accept the language $L = \{a^n b^n c^n / n \ge 1\}$ . (1)                                          |                                                                             |                         |         |          |                             | (15)    |  |
|                                                                                                                      |                                                                             |                         |         | [OR]     |                             |         |  |
| d)                                                                                                                   | Design a                                                                    | Design a Turing Machine |         |          |                             |         |  |
| (i) to compute $f(n) = n+2, n \in N$ .                                                                               |                                                                             |                         |         |          |                             |         |  |
|                                                                                                                      | (ii) to co                                                                  | ompute                  | f(n)    | = 2n + 1 | , $n \in N$ .               |         |  |
| (ii) to add two positive integers. (5+5+5                                                                            |                                                                             |                         |         |          |                             | (5+5+5) |  |

<sup>\*\*\*\*\*\*\*</sup>