M.Sc.DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2018
17PMT2ES01- FORMAL LANGUAGES AND AUTOMATA THEORY

Date: 25-04-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00
ANSWER ALL QUESTIONS
I a) Design a DFA which accepts all positive even integers.
[OR]
b) Construct a finite automation to accept all strings over $\{0,1\}$ containing exactly four zeros.
(5)
c) i) Let r be a regular expression. Then prove that there exists an NFA with $\in-$ moves that accepts L(r).
ii) Define regular expressions. Write the language of the regular expression
$\left((01+001) * 0^{*}\right)^{*}$.
[OR]
d) i) Construct an equivalent DFA with minimum number of nodes for the following NFA.

ii) Write a regular expression to denote a language L which accepts all strings which begin or end with either 00 or 11 .

II a) Prove that $L=\left\{0^{p} / p\right.$ is a prime number $\}$ is not regular.
[OR]
b) State and prove pumping lemma.
c)i) Let $L_{1}=(\mathbf{0}+\mathbf{1})^{* 101}$ and $L_{2}=(\mathbf{0}+\mathbf{1}) * \mathbf{0 1 0}$. Construct an NFA to accept $L_{1} \cup L_{2}$.
ii) State and prove any four closure properties of regular sets.
[OR]
d) Minimize the following automation.

	0	1
$\rightarrow \mathrm{~A}$	B	A
B	A	C
C	D	B
*D	D	A
E	D	F
F	G	E
G	F	G
H	G	D

III a) Construct a grammar to generate four digit odd integers.
[OR]
b) Define leftmost and rightmost derivations and give examples.
c i) The CFG is given by $\mathrm{G} G=(V, T, P, E)$ where
$V=\{E\}, T=\{i d\}, P=\{E \rightarrow E+E, E \rightarrow E * E, E \rightarrow i d\}$. Prove that this grammar is ambiguous.
ii) Write about Chomsky's hierarchy of languages.
[OR]
di) Optimize the CFG given below. S is the starting symbol.
$S \rightarrow A / 0 C 1, A \rightarrow B / 01 / 10, C \rightarrow \varepsilon / C D$.
ii) Write a context free grammar to generate the set of all palindromes over $\{a, b, c\}$. Hence construct an equivalent CNF to generate the same.

IV a) Define a PDA and explain instantaneous descriptions.
[OR]
b) Eliminate ε production from the CFG with production rules
$S \rightarrow X Y X, X \rightarrow 0 X / \varepsilon, Y \rightarrow 1 Y / \varepsilon$.
c) If a language L is accepted by a PDA A by empty stack then prove that there exist a PDA B accepts the same language L by final state.
d) Design a PDA to accept $L=\left\{w c w^{R} / w \in(0,1)^{*}\right\}$ by
(1) Empty stack.
(2) Final state.

V a) Define a Turing Machine and discuss about moves of the Turing Machine.
[OR]
b) Write a short note on multiple tracks Turing Machines .
c) Design a TM to accept the language $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
d) Design a Turing Machine
(i) to compute $f(n)=n+2, n \in N$.
(ii) to compute . $f(n)=2 n+1, n \in N$.
(ii) to add two positive integers.

