LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
M.Sc.DEGREE EXAMINATION -MATHEMATICS
SECOND SEMESTER – APRIL 2018
17PMT2MC01/ MT 2810 – ALGEBRA
Date: 17-04-2018 Dept. No. Max. : 100 Marks Time: 01:00-04:00
Answer ALL the questions
1. a) If $O(G) = p^2$ where p is a prime number, then show that G is abelian.
OR (5)
b) Prove that a group of order 72 is not simple.
c) If p is a prime number such that p^{α} divides order of G then prove that G has a subgroup of order p^{α} . OR (15)
d) State and prove Cauchy's theorem and prove that the number of <i>p</i> -sylow subgroups in <i>G</i> isof the form $1 + kp$.
 a) State and prove Division Algorithm. OR (5)
b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x)g(x)$ is also a primitive polynomial.
c) Let $f(x) = a_0 + a_1 x + + a_n x^n$ be a polynomial with integer coefficients. Suppose for some
prime number $p, p \nmid a_n, p \mid a_1, p \mid a_2, \dots, p \mid a_0, p^2 \nmid a_0$ then prove that $f(x)$ is irreducible over rationals.
(8)
d) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that $deg(f(x)g(x)) = deg(f(x)) + deg(g(x))$. (7) OR
e) If the primitive polynomial $f(x)$ can be factored as the product of two polynomials having rational
coefficients then prove that it can be factored as the product of two polynomials with integer coefficients. (8)
f) If $O(G) = p^n$ where p is a prime number then prove that $Z(G) \neq (e)$. (7)
3. a) If <i>a</i> , <i>b</i> in <i>K</i> are algebraic over <i>F</i> , then prove that $a \pm b$, <i>ab</i> and <i>a/b</i> (<i>if</i> $b \neq 0$) are algebraic over <i>F</i> . OR (5)
b) Find the degree of $\sqrt{2} + \sqrt{3}$ over Q .
c) The element $a \in K$ is said to be algebraic over E iff $F(a)$ is a finite extension over E

c) The element $a \in K$ is said to be algebraic over F *iff*F(a) is a finite extension over F.

OR

d) If L is the finite extension of K and K is the finite extension of F then prove that L is the finite extension of F.(8)

e) If *L* is the finite extension of *F* and *K* is the subfield of *L* which contains *F* then prove that [K:F] divides [L:F]. (7)

4. a) Find the degree of the splitting field x^3 -2 over Q and $x^4 + x^2 + 1$ over Q.

OR

(5)

(15)

(15)

b) Prove that *K* is a normal extension of *F*iff*K* is a splitting field of some polynomial over *F*.

c) State and prove fundamental theorem of Galois Theory.

OR

d) Let *K* be a normal extension of *F* and let *H* be a subgroup of G(K,F), $K_H = \{x \in K / \sigma(x) = x \forall \sigma \in H\}$ is a fixed field of *H* then prove that (i) $[K:K_H] = O(H)$, (ii) $H = G(K,K_H)$. In particular, H = G(K,F),

[K:F] = O(G(K,F)).

5. a) Let *G* be a finite abelian group such that $x^n = (e)$ is satisfied by atmost *n* elements of *G* for every *n* then prove that *G* is a cyclic group.

OR

(5)

b) Prove that for every prime number p and every integer m, there exists a field having p^m elements.

c) Prove that any finite division ring is necessarily a commutative field.

d) Prove that S_n is not solvable for $n \ge 5$ and verify S_3 is solvable.
