Answer ALL the questions

1. a) If $O(G)=p^{2}$ where p is a prime number, then show that G is abelian.
OR
b) Prove that a group of order 72 is not simple.
c) If p is a prime number such that p^{α} divides order of G then prove that G has a subgroup of order p^{α}.

OR
d) State and prove Cauchy's theorem and prove that the number of p-sylow subgroups in G isof the form $1+k p$.
2. a) State and prove Division Algorithm.

OR

b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x) g(x)$ is also a primitive polynomial.
c) Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ be a polynomial with integer coefficients. Suppose for some prime number $p, p \nmid a_{n}, p\left|a_{1}, p\right| a_{2}, \ldots, p \mid a_{0}, p^{2} \nmid a_{0}$ then prove that $f(x)$ is irreducible over rationals.
d) If $f(x)$ and $g(x)$ are two nonzero polynomials, then prove that $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+$ $\operatorname{deg}(g(x))$.

OR

e) If the primitive polynomial $f(x)$ can be factored as the product of two polynomials having rational coefficients then prove that it can be factored as the product of two polynomials with integer coefficients.

$$
\begin{equation*}
\text { f) If } O(G)=p^{n} \text { where } p \text { is a prime number then prove that } Z(G) \neq(e) \text {. } \tag{7}
\end{equation*}
$$

3. a) If a, b in K are algebraic over F, then prove that $a \pm b, a b$ and a / b (if $b \neq 0$) are algebraic over F.

OR
b) Find the degree of $\sqrt{2}+\sqrt{3}$ over Q.
c) The element $a \in \operatorname{Kis}$ said to be algebraic over $F \operatorname{iff} F(a)$ is a finite extension over F.

OR

d) If L is the finite extension of K and K is the finite extension of F then prove that L is the finite extension of F.(8)
e) If L is the finite extension of F and K is the subfield of L which contains F then prove that [$K: F]$ divides $[L: F]$.
4. a) Find the degree of the splitting field $x^{3}-2$ over Q and $x^{4}+x^{2}+1$ over Q.

OR

b) Prove that K is a normal extension of $F i f f K$ is a splitting field of some polynomial over F.
c) State and prove fundamental theorem of Galois Theory.

> OR
d) Let K be a normal extension of F and let H be a subgroup of $G(K, F), K_{H}=\{\mathrm{x} \in \mathrm{K} / \sigma(x)=x \forall \sigma \in H\}$ is a fixed field of H then prove that (i) $\left[K: K_{H}\right]=O(H)$, (ii) $H=G\left(K, K_{H}\right)$. In particular, $H=G(K, F)$, $[K: F]=O(G(K, F))$.
5. a) Let G be a finite abelian group such that $x^{n}=(e)$ is satisfied by atmostn elements of G for every n then prove that G is a cyclic group.

OR

b) Prove that for every prime number p and every integer m, there exists a field having p^{m} elements.
c) Prove that any finite division ring is necessarily a commutative field.
OR
d) Prove that S_{n} is not solvable for $n \geq 5$ and verify S_{3} is solvable.

