17/16PMT2MC03- PARTIAL DIFFERENTIAL EQUATIONS

\square

Max. : 100 Marks

Answer ALL the questions:

1. (a) Find the partial differential equation of the family of planes, the sum of whose x, y, z intercepts is equal to unity.
(b) Use Lagrange's method to solve the equation $\left|\begin{array}{ccc}x & y & z \\ \alpha & \beta & \gamma \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1\end{array}\right|=0$ where $z=z(x, y)$.
(c) Find the characteristics of the equation $p q=z$ and determine the integral surface which passes through the parabola $x=0, y^{2}=z$.
(OR)
(d) Derive the necessary and sufficient conditions for the two partial differential equations $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ to be compatible.
2. (a) Find the characteristic equations of $u_{x x}+2 u_{x y}+\sin ^{2} x u_{y y}+u_{y}=0$.

> (OR)
(b) Construct the adjoint operator for $L(u)=a(x) \frac{d^{2} u}{d x^{2}}+b(x) \frac{d u}{d x}+c(x) u$.
(c) Obtain the Riemann solution for the equation $\frac{\partial^{2} u}{\partial x \partial y}=F(x, y)$ given that (i) $u=f(x)$ on Γ, (ii) $\frac{\partial u}{\partial x}=$ $g(x)$ on Γ, where Γ is the curve $y=x$.
(OR)
(d) Explain the canonical form for second order elliptic partial differential equation and reduce the following equation $\left(1+x^{2}\right) u_{x x}+\left(1+y^{2}\right) u_{y y}+x u_{x}+y u_{y}=0$ to a canonical form.
3. (a) Derive Poisson's equation.
(OR)
(b) Obtain the solutions of Laplace's equation in cylindrical coordinates.
(c) Solve the interior Dirichlet's problem for a circle.
(OR)
(d) Solve the PDE $\nabla^{2} u=0,0 \leq x \leq a, 0 \leq y \leq b$, subject to the boundary condition $u_{x}(0, y)=$ $u_{x}(a, y)=0, u_{y}(x, 0)=0, u_{y}(x, b)=f(x)$.
4. (a) Solve the 3-dimensional diffusion equation $\frac{\partial T}{\partial t}=\alpha \nabla^{2} T$ where $T=T(r, \theta, z, t)$.
(OR)
(b) Derive the periodic solutions of one-dimensional wave equation in spherical polar coordinates.
(c) Obtain the solution of the equation $u_{t t}-c^{2} u_{x x}=0$ under the following conditions:
(i) $u(0, t)=$ 0 , (ii) $u(2, t)=0$, (iii) $u(x, 0)=\sin ^{3} \frac{\pi x}{2}$, and (iv) $u_{t}(x, 0)=0$.
(OR)
(d) Solve the one-dimensional diffusion equation in the region $0 \leq x \leq \pi, t \geq 0$ subject to the conditions (i) T remains finite as $t \rightarrow \infty$, (ii) $T=0$, if $x=0, \pi$ for all t, and (iii) At $t=0, T=$ $\begin{cases}x: & 0 \leq x \leq \pi / 2\end{cases}$
$\{\pi-x: \pi / 2 \leq x \leq \pi$
5. (a) Use Green's function technique to solve the Dirichlet's problem for a semi-infinite space. (5)
(OR)
(b) Find the Green's function for the Dirichlet problem on the rectangle \mathbb{R} : $0 \leq x \leq a, 0 \leq y \leq b$, described by the partial differential equation $\left(\nabla^{2}+\lambda\right) u=0$ in \mathbb{R} and the boundary condition $u=0$ on $\partial \mathbb{R}$.
(c) Show that the solution of the Dirichlet's problem is reduced to the determination of Green's function.
(OR)
(d) State and prove Helmholtz theorem.

