M.Sc.DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2018
17/16PMT2MC04- COMPLEX ANALYSIS

Date: 23-04-2018
Time: 09:00-12:00

Answer all the questions.

1. a. Evaluate $\int_{\gamma} \frac{e^{i z}}{z^{2}} d z, \gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$.

OR
b. State and prove Liouville's theorem.
c. Prove that any complex valued differentiable function defined on an open set G is analytic on G.

OR
d. State and prove homotopic version of Cauchy's theorem.
(15 marks)
2. a. If $\gamma:[0,1] \rightarrow C$ is a closed curve and $a \notin\{\gamma\}$, then prove that $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$ is an integer. OR
b. State and prove Morera's theorem.
c. State and prove Schwarz lemma. Also prove that if $f: D \rightarrow D$ is a one-one analytic map of D onto itself and $\mathrm{f}(\mathrm{a})=0$, then prove that there is a complex number c with $|c|=1$ such that $f=c \varphi_{a}$.

OR
d. State and prove the Riemann mapping theorem.
3. a. For $R e z_{n}>1$, prove that the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

OR
b. State and prove Functional equation.
c. State and prove the Weierstass factorization theorem.

OR
d. State and prove Bohr-Mollerup theorem.
4. a. Prove that $\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$.

OR
b. State and prove MittagLeffler's theorem.
c. State and prove Hadamard's factorization theorem.

OR
d. If f is an entire function of finite genus μ, then prove that f is of finite order λ and $\lambda \leq \mu+1$.
(15 marks)
5. a. Prove that a non - constant elliptic function has equally many poles as it has many zeros is a period parallelogram.

OR
b. Derive Legendre relation. (5 marks)
c. (i) Derive the relation $Z(z)=\frac{1}{z}+\sum_{\omega \neq 0} \frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega^{2}}$.
(ii) Prove that any two bases of the same module are connected by a unimodular
transformation.
(10+5)

OR

d) (i) Derive the first order differential equation satisfied by $\mathcal{P}(z)$.
ii) Prove the following: $\sigma\left(z+\omega_{1}\right)=-\sigma(z) e^{n_{1}\left(z+\frac{\omega_{1}}{2}\right)}$ and $\sigma\left(z+\omega_{2}\right)-\sigma(z) e^{n_{2}\left(z+\frac{\omega_{2}}{2}\right)}$. (10+5)

