LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION – **STATISTICS**

FIRSTSEMESTER – APRIL 2018

17/16UMT1AL02- MATHEMATICS FOR STATISTICS - I

Date: 30-04-2018 Time: 01:00-04:00

ANSWER ALL QUESTIONS.

SECTION A

- 1. Define upper triangular matrix, give an example.
- 2. Write any two properties of determinants.

3. Find the Eigen value of the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$. 4. Find the matrix *X* from the given equation: $\begin{bmatrix} 4 & -3 \\ 5 & 2 \end{bmatrix} - 3X = \begin{bmatrix} -3 & 2 \\ 5 & 1 \end{bmatrix}$

Dept. No.

5. If $y = x^3 - 3logx + e^x + 2tanx$, then find $\frac{dy}{dx}$

6. Find
$$\frac{d}{dx}\left(\frac{\log x}{x^2}\right)$$

- 7. Find the n^{th} derivative of $y = e^{ax}$.
- 8. Write the conditions for concave upward.
- 9. Prove that $\int_{0}^{\frac{\pi}{2}} \sin^{n}x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n}x dx.$ 10. Evaluate: $\int \frac{dx}{1+9x^{2}}.$

ANSWER ANY FIVE QUESTIONS.

SECTION B

$(5 \times 8 = 40)$

11. Solve the following simultaneous equations: x + y + 3z = 5, 2x + y + z = 4, x + 2y + 5z = 8. 12. Show that the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & -3 \\ 5 & 4 & -4 \end{bmatrix}$ satisfies the equation A(A - I)(A + 2I) = 0. 13. If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, Verify that $(AB)^t = B^t A^t$, where A^t is the transpose of A. 14. Find the maximum value of $\frac{\log x}{x}$ for positive values of x. 15. If $y = x^{x^{x - tox}}$, then find $\frac{dy}{dx}$. 16. Find the n^{th} derivative of $y = \frac{x^2}{(x-1)^2(x+2)}$. 17. Evaluate: $\int_0^{\frac{\pi}{2}} \frac{asinx + bcosx}{sinx + cosx} dx$. 18. Prove that $\int_0^{\frac{\pi}{4}} \log(1 + tan\theta) d\theta = \frac{\pi}{8} \log 2$.

SECTION C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

19. (a) Verify Cayley- Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 & -3 \\ 2 & 3 & -1 \\ 2 & 3 & 0 \end{bmatrix}$.

1

 $(10 \times 2 = 20)$

Max.: 100 Marks

(b) Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 8 & 2 \\ 4 & 9 & -1 \end{bmatrix}$$
. (14+6)
20. (a) (i) Without using logarithm find the derivative of $y = \frac{e^x + sinx}{secx - x^5}$
(ii) Using logarithm differentiate $y = (\tan x)^{\log x}$. (5+5)
(b) Find the points of inflection of the cubic curve $y = \frac{a^2x}{x^2 + a^2}$ and show that they lie on a straight line. (10)
21. (a) If $y = a\cos(\log x) + bsin(\log x)$ then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2 + 1)y_n = 0$.
(b) Differentiate $e^{sin^{-1}x}$ with respect to $sin^{-1}x$. (14+6)

22. (a) Evaluate:
$$\int \frac{x}{\sqrt{x^2 + x + 1}} dx$$
.
(b) Evaluate: $\int \frac{3x + 1}{(x - 1)^2 (x + 3)} dx$. (10+10)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$