B.Sc.DEGREE EXAMINATION -STATISTICS

SECOND SEMESTER - APRIL 2018
17/16UMT2AL02- MATHEMATICS FOR STATISTICS- II

Date: 28-04-2018
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

SECTION A

ANSWER ALL QUESTIONS.

1. Write the formula for S_{n} for the following sequences.
(i) $1,-4,9,-16, \ldots$
(ii) $1,3,6,10, \ldots$
2. Define least upper bound and greatest lower bound.
3. Define conditional convergence of a series.
4. Give examples of convergent and divergent series.
5. Define limit of a function on the real line.
6. When you say the subset D of R is of first category?
7. Verify the function $f(x)=\sin x(0 \leq x \leq \pi)$ obey the hypothesis of Rolle's theorem.
8. Prove that the derivative of a constant function on $[a, b]$ is the identically zero function on $[a, b]$.
9. Define Riemann integral.
10. What is meant by a subdivision of the closed bounded interval $[a, b]$?

SECTION B

ANSWER ANY FIVE QUESTIONS.

11. If A, B are subsets of S, then prove that (i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and (ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
12. If $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} s_{n}=M$, then prove that $L=M$.
13. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then prove the following:
(i) $\lim _{x \rightarrow a}[f(x)+g(x)]=L+M$, (ii) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=L \cdot M$.
14. Let $f: R \rightarrow R$ and let D be the set of points at which f is not continuous, then prove that D is of type F_{σ}.
15. Define Continuous and derivative of a real valued function f atc and hence prove that if f has a derivative at the point $c \in R$, then f is continuous at c.
16. Define sets of measure zero and hence prove that if each of the subsets E_{1}, E_{2}, \ldots of R is of measure zero, then $\mathrm{U}_{n=1}^{\infty} E_{n}$ is also of measure zero.
17. Let f be a bounded function on $[a, b]$. If σ and τ are any two subdivisions of $[a, b]$, then prove that $U[f: \sigma] \geq L[f: \tau]$.
18. State and prove Binomial theorem.

SECTION C

ANSWER ANY TWO QUESTIONS.
19. (a) Prove that $\lim _{n \rightarrow \infty} \frac{3 n^{2}-6 n}{5 n^{2}+4}=\frac{3}{5}$.
(b) Define bounded sequence and hence prove that if the sequence of real numbers $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent then $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
(c) If $R_{n+1}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$, then prove that
$R_{n}(x)-R_{n+1}(x)=\frac{f^{(n)}(a)(x-a)^{n}}{n!}$.
20. (a) State and prove Comparison test for series.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges to A and $\sum_{n=1}^{\infty} b_{n}$ converges to B , then prove tha $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges to $A+B$.
21. (a) State and prove Rolle 's Theorem.
(b)Let f and g be continuous functions on the closed bounded interval $[a, b]$ with $g(a) \neq g(b)$. If both f and g have a derivative at each point of (a, b) and $f^{\prime}(t)$ and $g^{\prime}(t)$ are not both equal to zero for any $t \in$ (a, b), then prove that there exists a point $c \in(a, b)$ such that $\frac{f^{\prime}(t)}{g^{\prime}(t)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.
22. (a) If $f, g \in \mathfrak{R}[a, b]$, then prove that $f+g \in \mathfrak{R}[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.
(b) Let f be a bounded function on the closed bounded interval $[a, b]$, then prove that $f \in \mathfrak{R}[a, b]$ if and only if for each $\varepsilon>0$, there exists a subdivision σ of $[a, b]$ such that $U[f: \sigma]<L[f: \sigma]+\varepsilon$.

