# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

B.Sc.DEGREE EXAMINATION -MATHEMATICS

SECOND SEMESTER - APRIL 2018
17 16 UMT2MC02 - ANA. GEO. OF 3D, FOURIER SERIES AND NUMBER THEORY

Date: 26-04-2018
Time: 01:00-04:00
$\square$
Max. : 100 Marks

## PART-A

## Answer ALL questions:

( $10 \times 2=20$ )

1. Find the equation to the plane through $(3,4,5)$ parallel to the plane $2 x+3 y-z+2=0$.
2. State the equation of line passing through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$.
3. Find the equation to the sphere whose centre is $(2,-3,4)$ and radius is 5 units.
4. Write the equation of the tangent plane to the sphere.
5. Define Fourier series.
6. Is the function $f(x)=\sin 2 x$ odd? Justify your answer.
7. Find the number of divisors of 840 .
8. Find the number of integers less than 729 and prime to it.
9. If $x, y, z$ be real and not all equal, show that $(x+y+z)(y z+z x+x y)>9 x y z$.
10. State Cauchy's inequality.

## PART - B

## Answer any FIVE questions:

11. Show that, if a plane has intercepts $a, b, c$ on the coordinate axes and is at a distance $p$ from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
12. Find the shortest distance between the line $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
13. Find the condition that the plane $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$ may be a tangent plane to the sphere $x^{2}++y^{2}+z^{2}+2 \mathrm{ux}+2 \mathrm{vy}+2 \mathrm{wz}+\mathrm{d}=0$.

14 . Find the equation of the sphere through the points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
15. Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period $2 \pi$, to be valid in the interval 0 to $2 \pi$.
16. Find a sine series for $f(x)=\left\{\begin{array}{l}x \text { when } 0<x<\frac{\pi}{2} \\ 0 \text { when } \frac{\pi}{2}<x<\pi\end{array}\right.$.
17. Find the remainder obtained in dividing $2^{46}$ by 47 .
18. Show that the $8^{\text {th }}$ power of any number is of the form 17 m or $17 \mathrm{~m} \pm 1$.

## PART - C

19. (a) Find the equation of the plane through the line of intersection of the planes $x+y+z=1$,
$2 x+3 y+4 z-7=0$ and perpendicular to the plane $x-5 y+3 z=5$.
(b) Find the equation of the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ in the plane $2 x-3 y+2 z+3=0$.
(10+10)
20. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Find the equation of the circumcircle of the triangle and determine the coordinates of the centre and radius.
21. Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $-\pi \leq x \leq \pi$. Deduce the sum of the series
(i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots$, (ii) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots$.
22. (a) State and prove Wilson's Theorem.
(b) Show that $13^{2 n+1}+9^{2 n+1}$ is divisible by 22 .
