LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc.DEGREE EXAMINATION -MATHEMATICS FIRST SEMESTER – APRIL 2018 MT 1500- ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY
Date: 25-04-2018 Dept. No. Max. : 100 Marks Time: 01:00-04:00 Max. : 100 Marks
Section – A (10 x 2 = 20 Marks)
Answer all the questions :
 Write down the nth derivative of y = log (ax + b). Show that in a parabola y² = 4ax the subnormal is constant. Define evolute of a curve. Write the formula for radius of curvature when the curve is given in polar coordinates. Define reciprocal equation. Diminish roots of the equation x⁴ - 4x³ - 7x² + 22x + 24 = 0. Show that cos h² x - sin h² x = 1 Write down the expansion for tan nθ. If e₁ and e₂ are eccentricities of a hyperbola and its conjugate then prove that e₁² + e₂² = 1
10) Write the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.
Section – B (5 x 8 = 40 Marks) Answer any five questions :
 11) Find the nth derivative of y = x+1/(2x-1)(2x+3). 12) Prove that the radius of a curvature at the point (a cos³ θ, a sin³θ) on the curve x^{2/3} + y^{2/3} = a^{2/3} is 3a sin θ cos θ. 13) Solve the equation x⁴ - 4x² + 8x + 35 = 0 given that 2 + i√3 is a root. 14) If α, β, γ are the roots of the equation ax³ + bx² + cx + d =0 find the equation whose roots are α², β², γ² 15) Prove that Sin θ/Sin θ = 64 Cos⁶θ - 80 Cos⁴θ + 24 Cos²θ - 1 16) If tan(α + iβ) = x + iy, Prove that x² + y² + 2x cot 2α + 1 = 0.
17) Prove that eccentric angles of the ends of a pair of conjugate diameters differ by a right angle.18) Derive the polar equation of a conic.
Section – C (2 x 20 = 40 Marks)
Answer any two questions : 19) a) If $y = \sin (m \sin^{-1} x)$, prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$.
b) Find the angle of intersection of the curves $r = \frac{a}{1+\cos\theta}$ and $r = \frac{b}{1-\cos\theta}$.
 20) a) Find the evolute of the parabola y² = 4ax. b) Solve 6x⁵ + 11x⁴ - 33x³ - 33x² + 11x + 6 = 0. 21) a) Show that if the roots of the equation x³ + px² + qx + r = 0 are in the A.P then 2p³ - 9pq + 27r=0. b) Find the positive root of the equation x³ - 2x² - 3x - 4 = 0 correct to 2 decimals by Horner's method.
22) a) If $sin(A+iB) = x + iy$, prove that i) $\frac{x^2}{cosh^2B} + \frac{y^2}{sinh^2B} = 1$
ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$
b) Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$.

1