LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION –**MATHEMATICS**

FIRST SEMESTER - APRIL 2018

MT 1502- ALGEBRA AND CALCULUS - I

Date: 25-04-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART A

ANSWERALL THE QUESTIONS

- (10 * 2 = 20 marks)
- 1. Find the n^{th} derivative of e^{ax} .
- 2. Show that in the curve $r = a\theta$ the polar subtangent varies as the square of the radius vector.
- 3. Write the conditions for the maxima and minima of functions of two variables.
- 4. Write down the use of Lagrange's multipliers' method.
- 5. Write the Cartesian formula for the radius of curvature.
- 6. Write down a pedal equation of a curve.
- 7. Form a rational cubic equation which shall have for roots $1, 3 \sqrt{-2}$.
- 8. Define reciprocal equation.
- 9. Define Descartes' rule of signs for negative roots..

10. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$ form the equation whose roots

are $\alpha - \frac{1}{\beta \gamma}$, $\beta - \frac{1}{\gamma \alpha}$, $\gamma - \frac{1}{\alpha \beta}$

PART B

ANSWERANY FIVE QUESTIONS (5 * 8 = 40 marks)

11. Find the nth differential coefficient of $x^2 log x$.

12. Find the angle at which the radius vector cuts the curve $\frac{l}{r} = 1 + \cos\theta$.

13. Find the maximum or minimum values of $2(x^2 - y^2) - x^4 + y^4$.

14. What is the radius of curvature of the curve $x^4 + y^4 = 2at$ any point (1,1)?

15. Find the asymptotes of $y^3 - 6xy^2 + 11x^2y - 6x^3 + x + y = 0$.

16. Solve the equation $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$ of which one root is $1 - \sqrt{5}$.

17. Determine completely the nature of the roots of the equation $x^5 - 6x^2 - 4x + 5 = 0$.

18. Show that the equation $3x^4 - 8x^3 - 6x^2 + 24x - 7 = 0$ has one positive , one negative and two imaginary roots.

PART C

ANSWERANY TWO QUESTIONS (2 * 20 = 40 marks)

19. a) If $y = \sin(m\sin^{-1} x)$, prove that $(1 - x^2) y_2 - xy_1 + m^2 y = 0$ and $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2) y_n = 0$.

b) Find the angle of intersection of the cardioids $r = a(1 + cos\theta)$ and $r = b(1 - cos\theta)$.

(10+10)

20. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

21.a) Show that if the roots of the equation $x^3 + px^2 + qx + r = 0$ are in A.P. then

$$2p^3 - 9pq + 27r = 0.$$

b) Solve the equation $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0.$ (10+10)

22. Using Horner's method, find the real root of the equation $x^3 - 3x + 1 = 0$.
