LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

 FIRST SEMESTER - APRIL 2018MT 1503- ANALYTICAL GEOMETRY OF 2D,TRIG. \& MATRICES
\square

PART-A

Answer all questions:
$(10 \times 2=20)$

1. Write the expansion of $\tan n \theta$ in powers of $\tan \theta$.
2. Solve approximately in radians $\sin \left(\frac{\pi}{3}+x\right)=0.87$.
3. Show that $\tan h^{-1} x=\frac{1}{2} \log _{e}\left(\frac{1+x}{1-x}\right)$.
4. Find the logarithms of $x+i y$.
5. Define similar matrices.
6. State Cayley-Hamilton theorem.
7. Find the pole of the line $5 x-2 y+3=0$ with respect to the parabola $y^{2}=2 x$.
8. Show that the sum of the squares of two conjugate semi-diameters of an ellipse is constant.
9. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

10 . Find the distance between the points in polar coordinates.

PART-B

Answer any FIVE questions
$(5 \times 8=40)$
11. Prove that $\frac{\sin 9 \theta}{\sin \theta}=256 \cos ^{8} \theta-448 \cos ^{6} \theta+240 \cos ^{4} \theta-49 \cos ^{2} \theta+1$.
12. Expand $\sin ^{6} \theta \cos ^{2} \theta$ in a series of cosines of multiples of θ.
13. Separate into real and imaginary parts $\tan ^{-1}(x+i y)$.
14. Find the general value of $\log _{(-3)}(-2)$.
15. Calculate A^{4} when $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$.
16. A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose centre is C meets the circle $x^{2}+y^{2}=a^{2}+b^{2}$ at Q and Q^{\prime}. Prove that $C Q$ and $C Q^{\prime}$ are conjugate diameters of the ellipse.
17. Show that the locus of the intersection of tangents to $y^{2}=4 a x$ which intercept a constant length d on the directrix is $\left(y^{2}-4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
18. The asymptotes of a hyperbola are parallel to $2 x+3 y=0$ and $3 x-2 y=0$.Its centre is at $(1,2)$ and it passes through the point $(5,3)$. Find its equation and its conjugate.

PART-C

Answer any TWO questions:
19. (a). Expand $\cos 9 \theta$ in powers of $\cos \theta$.
(b). Find the expansion of $\sin ^{n} \theta$ when n is a positive integer.
(c) Find $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x+\cos 2 x}{\cos ^{2} x}$.
20. (a) If $\cosh u=\sec \theta$, show that $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$. $(10+10)$
(b) If $\sin (A+i B)=x+i y$, prove that
(i) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$.
(ii) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} A}=1$.
21. (a) Find the Eigen values of the matrix $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 2 & 0 \\ 1 & 0 & 3\end{array}\right)$.
(b) Verify the Cayley-Hamilton theorem for the matrix $\left(\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right) \cdot(10+10)$
22.(a) The polar of a point P with respect to the parabola $y^{2}=4 a x$ meets the curve in Q and R . Show that if P lies on the line $l x+m y+n=0$, then prove that the middle point of QR lies on the parabola $l\left(y^{2}-4 a x\right)(l x+m y+n)=0$.
(b) Show that $r^{2}-k r \cos (\theta-\alpha)+k d=0$ represents a system of coaxial circles for different values of k.Find the coordinates of the limiting points and the equation of the common radialaxis.

