LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
B.C.A. DEGREE EXAMINATION – COMPUTER AI	PPLICATIONS				
SECOND SEMESTER – APRIL 20	18				
MT 2101 / CA 2100- MATHEMATICS FOR COMPUTER APPLICATIONS					
Date: 28-04-2018 Dept. No.	Max. : 100 Marks				
PART – A					
ANSWER ALL OUESTIONS	$(10 \times 2 = 20)$				
$(\cos\theta, \sin\theta)$	(10 M 2 - 20)				
1. Show that $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is orthogonal.					
2. If α and β are the roots of the equation $2x^2 + 3x + 5 = 0$, find $\alpha + \beta$,	αβ.				
3. Write the Newton-Raphson formula.					
4. Define unitary matrix.					
5. Prove that $\cos h^2 x - \sin h^2 x = 1$.					
6. Transform the equation $3x^3 + 4x^2 + 5x - 6 = 0$ into one in which the	coefficient of x^3 is unity.				
7. Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ if $u = x^2 + y^2$.					
8. Integrate e^{5x+2} with respect to <i>x</i> .					
9. Evaluate the double integral $\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$.					
10. Form partial differential equation by eliminating arbitrary constants	from $z = ax + by + a^2 + b^2$.				
PART – B					
ANSWER ANY FIVE QUESTIONS:	(5 X 8 = 40)				
11. Prove that $-64\sin^7 \theta = \sin 7\theta - 7\sin 5\theta + 21\sin 3\theta - 35\sin \theta$. $\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$					
12. Find the rank of the matrix $\begin{pmatrix} -1 & 0 & -2 \\ 2 & 1 & 3 \end{pmatrix}$					
13. Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx$ progression. Solve the equation $27x^3 + 42x^2 - 28x - 8 = 0$ whose progression.	d + d = 0 may be geometric se roots are in geometric				
14. Verify Euler's theorem for the function $u = x^2 + y^2 + 2xy$.					

15. Evaluate $\int x^3 \sin 2x dx$, using Bernoulli's formula.

16. Solve: $(D^2 - 5D - 6) y = e^{4x} + \cos x$.

17. Determine the root of $xe^x - 3 = 0$ correct to three decimal places, using the method of False position.

18. Using Trapezoidal rule with $h = \frac{1}{2}$ and $h = \frac{1}{4}$ to evaluate $\int_{a}^{b} f(x) dx$ using the table below:

Х	0.000	0.250	0.500	0.750	1.000
f(x)	0.79788	0.77334	0.70413	0.60227	0.48394

and find the solution by Simpson's $\frac{3}{8}$ rule.

PART – C

ANSWER ANY TWO QUESTIONS:

- 19. (a) Verify Cayley –Hamilton theorem for the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$
 - (b) Find the real and imaginary parts of $\tan(x + iy)$.
- 20. (a) Solve equation $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$

(b) Find the curvature of the curve $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. (10+10)

21. a) Show that the volume of the solid generated by the revolution of the upper

half of the loop of the curve $y^2 = x^2(2-x)$ is $\frac{4}{2}\pi$.

(b) Find the area of the loop of the curve $4y^2 = (x-5)^2(x-1)$. (10+10)

22. (a) Evaluate $\iiint xyzdxdydz$ taken through the positive octant of the sphere

$$x^{2} + y^{2} + z^{2} = a^{2}$$
(b) Solve $\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} - 3y = sint$ given $y = \frac{dy}{dt} = 0$ when $t = 0$. (10+10)

2

(10+10)

(2 X 20 = 40)