LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

\square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer ALL questions:
$(10 \times 2=20)$

1. Find the equation to the plane through $(3,4,5)$ parallel to the plane $2 x+3 y-z=0$.
2. Find the equation of the line joining the points $(2,5,8)$ and $(-1,6,3)$.
3. Find the equation of the sphere which has its centre at the point $(1,2,3)$ and radius 4 units.
4. Find the equation of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}+x+y+z=20$ at the point $(1,2,3)$
5. Define odd and even functions.
6. Find the Fourier coefficient a_{0} for the function $f(x)=\frac{1}{2}(\pi-x), 0 \leq x \leq 2 \pi$.
7. Find the number of all divisors of 360 .
8. State Wilson's theorem.
9. If a, b, c are positive numbers and $a<b$, prove that $\frac{a+x}{b+x}>\frac{a}{b}$.
10. StateWeirstrass inequalities.

PART - B

Answer any FIVE questions:
11. Find the equation of the plane passing through the points $(-1,3,2)$, and perpendicular to the two planes $x+2 y+2 z=5,3 x+3 y+2 z=8$.
12. Find the image of the point $(1,-2,3)$ in the plane $2 x-3 y+2 z+3=0$.
13. Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$.
14. Find the Fourier series for the function $f(x)=x^{2}$ in the interval $-\pi<x<\pi$.
15. Find a sine series for the function $f(x)=c$ in the interval $(0, \pi)$.
16. Find the remainder when 2^{46} is divisible by 47 .
17. Show that if a, b, c are positive unequal quantities then $a x^{b-c}+b x^{c-a}+c x^{a-b}>a+b+c$.
18. If x and y are positive quantities whose sum is 4 , show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \geq 12 \frac{1}{2}$.

PART-C

Answer any TWO questions:
19. a) Find the equation of the plane passing through the points $(3,1,2)$ and $(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.
b) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}, \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar.
20. a) Find the equation of the sphere which touches the sphere
$x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$ at the point $(2,-2,1)$ and passes through the origin.
b) Find the equation of the sphere through the four points
$(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.

$$
(10+10)
$$

21. a) Find in the range $-\pi$ to π, the Fourier series for $f(x)=\left\{\begin{array}{cc}1+x & 0<x<\pi \\ -1+x & -\pi<x<0\end{array}\right.$
b) Prove that $13^{2 n+1}+9^{2 n+1}$ is divisible by 22
$(12+8)$
22. a) Show that the $8^{\text {th }}$ power of any number is of the form $17 m$ or $17 m \pm 1$.
b) Prove that $8 x y z<(y+z)(z+x)(x+y)<\frac{8}{3}\left(x^{3}+y^{3}+z^{3}\right)$. $(10+10)$
