LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

[******] **B.Sc.**DEGREE EXAMINATION -MATHEMATICS

SECOND SEMESTER - APRIL 2018

MT 2503- ANALY. GEOM. OF 3D, FOURIER SERIES & NUM. THEORY

Date: 26-04-2018 Time: 01:00-04:00	Dept. No.	Max. : 100 Marks
	PART – A	

- 1. Find the equation to the plane through (3,4,5) parallel to the plane 2x + 3y z = 0.
- 2. Find the equation of the line joining the points (2, 5, 8) and (-1, 6, 3).
- 3. Find the equation of the sphere which has its centre at the point (1, 2, 3) and radius 4 units.
- 4. Find the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 + x + y + z = 20$ at the point (1, 2, 3)
- 5. Define odd and even functions.
- 6. Find the Fourier coefficient a_0 for the function $f(x) = \frac{1}{2}(\pi x), 0 \le x \le 2\pi$.
- 7. Find the number of all divisors of 360.
- 8. State Wilson's theorem.

Answer ALL questions:

- 9. If a,b,c are positive numbers and a < b, prove that $\frac{a+x}{b+x} > \frac{a}{b}$.
- 10. StateWeirstrass inequalities.

PART - B

Answer any FIVE questions:

- 11. Find the equation of the plane passing through the points (-1, 3, 2), and perpendicular to the two planes x + 2y + 2z = 5, 3x + 3y + 2z = 8.
- 12. Find the image of the point (1, -2, 3) in the plane 2x 3y + 2z + 3 = 0.
- 13. Find the equation of the sphere which has its centre at the point (6, -1, 2) and touches the plane 2x - y + 2z - 2 = 0.
- 14. Find the Fourier series for the function $f(x) = x^2$ in the interval $-\pi < x < \pi$.
- 15. Find a sine series for the function f(x) = c in the interval $(0, \pi)$.
- 16. Find the remainder when 2^{46} is divisible by 47.
- 17. Show that if a, b, c are positive unequal quantities then $ax^{b-c} + bx^{c-a} + cx^{a-b} > a+b+c$.

18. If x and y are positive quantities whose sum is 4, show that $\left(x+\frac{1}{x}\right)^2 + \left(y+\frac{1}{y}\right)^2 \ge 12\frac{1}{2}$.

(5 X 8 = 40)

(10 X 2 = 20)

Answer any TWO questions:

19. a) Find the equation of the plane passing through the points (3, 1,2) and (3, 4, 4) and perpendicular to the plane 5x + y + 4z = 0.

b) Prove that the lines
$$\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}, \ \frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$$
 are coplanar.
(10 + 10)

20. a) Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 - 6x + 2z + 1 = 0$ at the point (2, -2, 1) and passes through the origin.

b) Find the equation of the sphere through the four points (2,3,1), (5,-1,2), (4,3,-1) and (2,5,3).

21. a) Find in the range $-\pi$ to π , the Fourier series for $f(x) = \begin{cases} 1+x & 0 < x < \pi \\ -1+x & -\pi < x < 0 \end{cases}$

- b) Prove that $13^{2n+1} + 9^{2n+1}$ is divisible by 22 (12 + 8)
- 22. a) Show that the 8th power of any number is of the form $17m \text{ or } 17m \pm 1$.

b) Prove that
$$8xyz < (y+z)(z+x)(x+y) < \frac{8}{3}(x^3+y^3+z^3)$$
. (10+10)

(2 X 20 = 40)

(10 + 10)

PART-C