LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **MATHEMATICS**

SECONDSEMESTER – APRIL 2018

MT 2811- MEASURE THEORY AND INTEGRATION

Date: 19-04-2018 Dept. No.	Max. : 100 Marks	
Answer ALL questions:		
1. (a) For any sequence of sets $\{E_i\}$, prove that $m^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} m^*(A_i)$ (OR)	E_i). (5)	
(b) If f and g be real valued measurable functions defined on a set E , then prove $f - g$ and fg are also measurable .	that (5)	
(c)Prove that the outer measure of an interval equals to its length.	(15)	
(OR)		
(d) (i) Prove that not every measurable set is a Borel set.(ii)Prove that there exists a non-measurable set.	(7+8)	
2. (a)) Let A and B be any two disjoint measurable sets. If ϕ is a simple function then prove that		
(i) $\int_{A\cup B} \phi dx = \int_A \phi dx + \int_B \phi dx$ (ii) $\int a\phi dx = a \int \phi dx$, if $a > 0$. (OR)	(5)	
(b) Show that $\int_0^\infty \frac{\sin t}{e^t - x} dt = \sum_{n=1}^\infty \frac{x^{n-1}}{n^2 + 1}, -1 \le x \le 1.$	(5)	
(c) State and prove Fatou's lemma. (OR)	(15)	
(d) (i) State and prove Lebesgue's Dominated Convergence Theorem. (ii) If f is Riemann integrable and bounded over the finite interval [a, b], then prove that f is integrable $R \int_a^b f dx = \int_a^b f dx$. (7+8)		
3. (a) Show that if μ is a σ -finite measure on a ring \Re , then prove that the exter is also σ -finite.	asion $ar{\mu}$ of μ to S^* (5)	
(OR) (b) Show that every algebra is a ring and every σ -algebra is a σ -ring.	(5)	
(c)If μ is a σ -finite measure on a ring \Re , then prove that it has a unique extensior ring $S(\Re)$.	n to the σ - (15)	
(OR)		
(d) Let μ^* be an outer measure on $\mathcal{H}(\mathfrak{R})$ and let S^* denote the class of μ^* -meas prove that S^* is a σ -ring and μ^* restricted to S^* is a Complete Measure.	urable sets. Then (15)	
4. (a) Let ψ be strictly convex, then prove that $\psi(\int f d\mu) = \int \psi \bullet f d\mu$ if and only	y if $f = \int f d\mu$ a.e. (5)	
(OR) (b) Let ψ be a function on (a, b) . Then prove that ψ is convex on (a, b) if and only if for each		
x and y such that $a < x < y < b$, the graph of ψ on (a, x) and (y, b) does not lie below the		
line passing through $(x, \psi(x))$ and $(y, \psi(y))$.	(5)	

(c) (i) State and prove Holder's Inequality (ii) State and prove Jensen's formula. (OR)	(7+8)
(d) State and Prove Minkowski's inequality.	(15)
5. (a)Prove that the countable union of sets with respect to a signed measure v is a p	oositive set. (5)
(OR) (b) Let μ be a signed measure on $[X, S]$ and let ϑ be a finite-valued signed measure on such that $\vartheta \ll \mu$, then prove that given $\varepsilon > 0$ there exists $\delta > 0$ such that $ \vartheta (E) < \omega$ whenever $ \mu (E) < \delta$. (c) State and prove Jordan decomposition theorem. (OR) (d)State and prove Radon-Nikodym Theorem. (15)	

\$\$\$\$\$\$\$