LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - STATISTICS

SECONDSEMESTER - APRIL 2018
MT 2906- REAL ANALYSIS AND LINEAR ALGEBRA

Date: 19-04-2018
Dept. No. $\square$ Max. : 100 Marks

Answer ALL the questions.

1. a) Find $n_{0} \in N$ such that $\left|\frac{n}{n+2}-1\right|<\frac{1}{3}$ and find the limit of $\left\{\frac{n}{n+2}\right\}$.

OR
b) If $\sum a_{n}$ is a convergent series then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
c) (i) If $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$ then prove that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=(L+M)$.
(ii) If $\left\{a_{n}\right\}$ is a decreasing sequence of positive terms converging to zero then prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

OR
d) (i) Let $\sum a_{n}$ be a divergent series of positive numbers. Then prove that there is a sequence $\left\{\varepsilon_{n}\right\}$ of positive numbers which converges to zero but $\sum \varepsilon_{n} a_{n}$ diverges.
(ii) Determine the convergence or divergence of the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{3}{2 \cdot 3 \cdot 4}+\frac{5}{3 \cdot 4 \cdot 5}+\frac{7}{4 \cdot 5 \cdot 6}+\cdots$. (10+5)
2) a) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$ then prove that $L=M$.

OR
b) If the real valued function $f$ is differentiable at the point $a \in R$ then prove that $f$ is continuous at ' $a$ '.
c) (i) Prove that a real valued function $f$ defined in a neighbourhood of a point ' $a$ ' is continuous at ' $a$ ' if and only if for every sequence $\left\{x_{n}\right\}$ in the domain of $f$ converging to ' $a$ ', the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(a)$.
(ii) State and prove mean value theorem for derivatives.

OR
d) (i) State and prove Taylor's Formula.
(ii) Define continuity, jump discontinuity and removable discontinuity.
3. a) For any partition P of $[a, b]$, prove that $m[f ; P](b-a) \leq L[f ; P] \leq U[f ; P] \leq M[f ; P](b-a)$.

OR
b) State and prove second mean value theorem for integrals. integrable if and only if for every $\varepsilon>0$ there exists a subdivision $P$ of $[a, b]$ such that $U[f ; P]-$ $L[f ; P]<\varepsilon$.
(ii) If $f$ is monotone on $[a, b]$ then prove that $f$ is Riemann integrable on $[a, b]$.

## OR

d) (i) State and prove First Fundamental theorem of Calculus.
(ii) If $f$ is continuous function on the closed bounded interval $[a, b]$ and if $\varphi^{\prime}(x)=f(x)$ for $x \in$ $[a, b]$ then prove that $\int_{a}^{b} f(x) d x=\varphi(b)-\varphi(a)$.
4. a) Show that the vectors $\{1,2,3\}$ and $\{3,2,1\}$ are linearly independent over the field of rational numbers.

## OR

b) If the $k n$-vectors $A_{1}, A_{2}, \ldots, A_{k}$ are linearly independent but the vectors $A_{1}, A_{2}, \ldots, A_{k}, B$ are linearly dependent then prove that $B$ is a linear combination of $A_{1}, A_{2}, \ldots, A_{k}$.
c) (i) If the linear system of $m$ equations in $n$ unknowns $A X+B=0$ is consistent then prove that a complete solution is given by a complete solution of the corresponding homogeneous system $A X=0$ plus any particular solution of $A X+B=0$.
(ii) If the $k n$-vectors $A_{1}, A_{2}, \ldots, A_{k}$ are linearly independent then prove that any $k+1$ linear combinations of these $n$-vectors are linearly dependent.

OR
d) (i) Let $V_{n}$ be a vector space over $F$, not consisting of the zero vector alone then prove that $V_{n}$ contains atleast one set of linearly independent vectors $A_{1}, A_{2}, \ldots, A_{k}$ such that the collection of all linear combinations $X$ of the form $X=t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{k} A_{k}$ where $t^{\prime} s$ are arbitrary scalars from $F$, is precisely $V_{n}$. Moreover, prove that the integer $k$ is uniquely determined for each $V_{n}$.
(ii) Find the complete solution of non-homogeneous system $x_{1}-x_{2}+2 x_{3}=1$ and

$$
\begin{equation*}
2 x_{1}+x_{2}-x_{3}=2 \tag{10+5}
\end{equation*}
$$

5 a) Apply Gram Schmidt orthonormalization process to the vectors $(1,0,1),(1,0,-1),(0,3,4)$ to obtain an orthonormal basis for $R^{3}$.

## OR

b) Find the characteristic roots and their corresponding vectors of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
c) Reduce the quadratic form $x_{1}^{2}+5 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}+6 x_{1} x_{3}$ to canonical form through an orthogonal transformation.

## OR

d) Explain the process of reduction to diagonal form and hence reduce the matrix

