LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
B.Sc.DEGREE EXAMINATION - PHYSICS

THIRDSEMESTER - APRIL 2018
MT 3100- ALLIED MATHEMATICS FOR PHYSICS

Date: 05-05-2018
Time: 09:00-12:00

Dept. No.

\square Max. : 100 Marks

PART A

Answer ALL the questions

1.If $y=(a x+b)^{m}$, find y_{n}.
2. Find the polar subtangent and subnormal of the curve $r=a \theta$
3.Write the expansion for $\log \left(\frac{1+x}{1-x}\right)$.
4.Find the rank of the matrix $A=\left(\begin{array}{lll}1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right)$.
5.Find the Laplace transform of $e^{2 t}+3 e^{-5 t}$.
6.Find $L^{-1}\left(\frac{1}{(s+1)^{2}}\right)$.
7. Write down the expansion of $\tan \theta$ in a series of ascending powers of θ.
8.Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9.What is the chance that a leap year selected at random will contain 53 Sundays?
10. Write down the probability mass function for the Poisson distribution.

PART B

Answer any FIVE questions
($5 \times 8=40$)
11. Find the $n^{\text {th }}$ differential coefficient of $x^{2} e^{3 x}$.
12. Find the lengths of the subtangent and subnormal at (a, a) on the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$.
13. If a, b, c denote three consecutive integers, show that $\log _{e} b=\frac{1}{2} \log _{e} a+\frac{1}{2} \log _{e} c+\frac{1}{2 a c+1}+$ $\frac{1}{3} \frac{1}{(2 a c+1)^{3}}+\cdots$.
14. Verify Cayley Hamilton theorem for the matrix $A=\left(\begin{array}{rr}2 & -1 \\ -8 & 4\end{array}\right)$.
15. Find the Laplace transform of (i) $\frac{e^{-3 t}-e^{-4 t}}{t}$ (ii) $t \cos 3 t$.
16. Write down the expansion of $\cos 5 \theta$ in terms of $\cos \theta$.
17. Calculate the mean for the following table giving the age distribution of 542 members:

Age(in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

18. Ten coins are thrown simultaneously. Find the probability of getting at least seven heads.

PART C

Answer any TWO questions
19. (a) Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
(b) Find the maximum and minimum values of the function $f(x)=2 x^{3}-3 x^{2}-36 x+10$.

$$
(10+10)
$$

20. (a) Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$.
(b) Find the sum to infinity of the series $1+\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\cdots$.
21. (a) Solve the equation $y^{\prime \prime}-3 y^{\prime}+2 y=e^{2 t}$, given that $y(0)=-3, y^{\prime}(0)=5$.
(b) Prove that $\cos ^{6} \theta=\frac{1}{32}[\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10]$.
22. (a) Separate into real and imaginary parts of $\tan (x+i y)$.
(b) Two unbiased dice are thrown. Find the probability that (i) both the dice show the same number (ii) the first die shows 6 (iii) the total of the numbers on the dice is 8 (iv) the total of the numbers on the dice is greater than $8(\mathrm{v})$ the total of the numbers on the dice is 13 .
