LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

J.G. DEGREE EXAMINATION – CHEM., PHY., STAT., COMP.SCI.& COMP.APP.

THIRDSEMESTER – APRIL 2018

MT 3206- APPLIED MATHEMATICS

Date: 04-05-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20)$

PART – A

Answer ALL questions.

- 1. Integrate $x^{7/2}$ with respect to x.
- 2. Define Average Cost.
- 3. State any two rules of vector differentiation.
- 4. If $\vec{r} = x\vec{\iota} + y\vec{j} + z\vec{k}$, find $\nabla \vec{r}$.
- 5. Define partial differential equation.
- 6. Write the degree of the following differential equation

i)
$$\frac{d^2y}{dt^2} - (\frac{dy}{dt})^2 + 7y = 0$$
ii) $(\frac{d^2y}{dt^2})^3 + (\frac{dy}{dt})^4 = 0$

- 7. Prove that $L\{1\} = \frac{1}{s}$ if s > 0.
- 8. Find L(sinat).
- 9. Find $L^{-1}\left(\frac{1}{(s+3)}\right)$.
- 10. Define Spearman's rank correlation coefficient.

PART – B

Answer any FIVE questions.

 $(5 \times 8 = 40)$

- 11. If demand function is $y = 32 4x x^2$, find the consumer surplus if $x_0 = 1$.
- 12. Write any five property of integral calculus.
- 13. Find the divergence and curl of the vector point function $xy^2\vec{i} + 2xy^2\vec{j} 3yz^2\vec{k}$.

14. Prove that $\nabla(r^n) = n(n+1)r^{n-1}$. where $r = |\vec{r}|, \vec{r} = x\vec{\iota} + y\vec{j} + z\vec{k}$.

15. Find the Laplace transform of $e^{-3t}sin^2t$.

16. Find
$$L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$$

17. Calculate the coefficient of correlation.

Х	1	2	3	4	5
Y	10	20	30	50	40

18. In certain chemical reaction the rate of conversion of a substance at a time *t* is proportional to the quantity of substance still untransformed at that time *t*. At end of one hour 60 grams remain and at the end of 4hrs 21 grams remain. How many grams of substances got wasted?

PART – C

Answer any TWO questions.

 $(2 \times 20 = 40)$

19. (a) If the marginal revenue function is $R'(x) = 12 - 8x + x^2$, determine the revenue and demand function.

(b) Determine consumer surplus and producer surplus under pure competition for the demand function $y = 16 - x^2$ and supply function y = 4 + x, where p is the price and x is quantity. (8+12)

20. Evaluate $\iint \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = (x + y)\vec{i} - x\vec{j} + z\vec{k}$ and *S* is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

21. (a) Solve $y'' - 3y + 2y = e^{2t}$. given that y(0) = -3, y'(0) = 5 using laplace transform. (b) Find $L(e^{2t} \cos 5t)$. (12+8)

22. Calculate the standard deviation, coefficient of variation and variance for the following data:

Roll. No.	5	15	25	35	45	55
Marks	10	20	30	50	40	30