LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **MATHEMATICS**

THIRDSEMESTER – APRIL 2018

MT 3810- TOPOLOGY

Date: 30-04-2018 Time: 01:00-04:00	Dept. No.		Max. : 100 Marks	
Answer all the questions. Ea	ch question carries 20	marks.		
I. a)1) In any metric space prove that each closed sphere is a closed set. OR				
a)2) Define the follo	owing: (i)topological		ce and (iii) relative topology. (5)	
 b)1) Let X and Y be metric spaces and f a mapping of X into Y. Then prove that f is continuous ⇔ f⁻¹(G) is open whenever G is open in Y. b)2) State and prove Cantor's intersection theorem. (7+8) 				
b)2) State and prove	(7+8)			
OR c)1) Let X and Y be metric spaces and f a mapping of X into Y. Then prove that f is continuous at x_o if and only if $x_n \rightarrow x_o \Rightarrow f(x_n) \rightarrow f(x_o)$				
c)2) If {A_n} is a sequence of nowhere dense sets in a complete metric space X then prove that exists a point in X which is not in any of the A_n's. (7+8)				
II. a)1) Prove that any continuous image of a compact space is compact. OR				
a)2) Prove that any cl	losed subspace of a co	ompact space is compact	. (5)	
b)1) State and prove b)2) Prove that a top		and iff avery along of al	aged gate with the finite	
· · · · ·	rty has non-empty into	bacat iff every class of cl ersection. OR	(7+8)	
	ogical space is compa ty has non-empty into		asic closed sets with the finite (15)	
III.a)1) Prove that a one-to-one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism.				
		OR		
a)2) Quoting the necest totally bounded.	ssary results prove the	at a metric space is comp	pact implies it is complete and (5)	
b)1) Prove that the problem b)2) State and prove A		ty class of Hausdorff spa	ace is a Hausdorff space. (3+12)	
c) Prove that the follo(i) X is compact (ii)	0	quivalent:	Bolzano-Weierstrass property. (15)	

IV.a)1) Prove that any continuous image of a connected space is connected. OR		
a)2) Prove that the product of any non-empty class of connected space is connected.		
b) State and prove Tietze Extension theorem.ORc) State and prove Urysohn Imbedding theorem.	(15)	
V.a)1) State Real and Complex Stone Weierstrass theorems. OR		
a)2) Prove that X_{∞} is compact.		
b) Proving the necessary lemmas, state and prove Real Stone-Weierstrass theorem. OR		
c) State and prove Weierstrass approximation theorem.		
