LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

THIRDSEMESTER – APRIL 2018

MT 3964- FORMAL LANGUAGES AND AUTOMATA

Date: 05-05-2 Time: 09:00-	2018 12:00	D	ept. No.		Max. : 100 Marks		
ANSWER ALL QUESTIONS							
I a) Design a DFA to accept all positive integers divisible by 100.							
b) Construct 1	NFA acc	(5)					
c) i) Let r be a regular expression. Then prove that there exists an NFA with ϵ - moves that accepts L(r)							
ii) Write an	NFA wi	(8+7)					
d)i) Enumerate the differences between DFA and NFA.ii) Construct DFA equivalent to the following NFA.							
		0	1				
	\rightarrow q ₀	$\{\mathbf{q}_0,\mathbf{q}_1\}$	φ				
	q ₁	φ	$\{q_1, q_2\}$				
	* q ₂	φ	φ				
(5+10)	-2						
(3+10)							
IIa) State and p	prove pu	mping lemma	1.				
b) Show that	a interse	ction of two	regular lang	guages is regular.	(5)		
c)i) If L is acce	epted by	a NFA with	∈ - transact	ion then show that L is acc	cepted by a		
ii) Show that	$(0^{*}1^{*})^{*}$	$f = (0 + 1)^*$.			(8 + 7)		
[OR]							
d) Minimize	the follo	wing automa	ton.				
	0	1					
$\rightarrow A$	В	F					
В	G	С					
* C	A	C					
D F	С и	G F					
E F	C	G					
G	G	E					
Н	G	С					
					(15)		
III a) Construct a grammar to generate all five digit positive even integers.							
[UK]							
b) write a g	rainnar	to generate	$L = \{WW \}$	$w \in (a, b, c)^* \}$.	(3)		

c ij) Discuss about elimination of unit productions and give an example.	
ii) Wr	rite about Chomskey's Hierarchy of grammars. [OR]	(7+8)
d i ii) Eliminate the useless symbols from the grammar with the following pro- rules $S \rightarrow aA/a / Bb / cC$, $A \rightarrow aB$, $B \rightarrow a / Aa$, $C \rightarrow cCD$, $D \rightarrow ddd$) Write about CNF. Convert the grammar with productions $S \rightarrow aABA$	oduction
	$A \rightarrow abABa / a, B \rightarrow BAa / b into CNF.$	(5+10)
IV a)	Define ambiguous grammar and give an example. [OR]	
b)	Define parse trees and give an example. (5)
c)	If a language L is accepted by a PDA A by final state then prove that t a PDA B accepts the same language L by empty stack. [OR]	here exist (15)
d)	Design a PDA to accept the set $L = \{wcw^R / w \in (0,1)^*\}$ by	
	(1) Empty stack.(2) Final state.	(10+5)
V a)	Define a Turing Machine and moves of a Turing Machine. [OR]	
b)	Write about any two programming techniques of a Turing machine .	(5)
c)	Design a TM to to accept $L = \{0^n 1^n 2^n / n \ge 1\}.$	
d)	[OR] Design a Turing Machine for multiplication.	(15)
