M.Sc.DEGREE EXAMINATION - MATHEMATICS

THIRDSEMESTER - APRIL 2018
MT 3964- FORMAL LANGUAGES AND AUTOMATA

Date: 05-05-2018
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00
ANSWER ALL QUESTIONS
I a) Design a DFA to accept all positive integers divisible by 100 .
[OR]
b) Construct NFA accepting binary strings with two consecutive 0 's.
c) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts L(r).
ii) Write an NFA with \in - moves to accept $\left(\mathbf{1}^{*}+\mathbf{1 0 * 0}\right)^{*}$.
[OR]
d)i) Enumerate the differences between DFA and NFA.
ii) Construct DFA equivalent to the following NFA.

	0	1
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	ϕ
q_{1}	ϕ	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$* \mathrm{q}_{2}$	ϕ	ϕ

(5+10)

IIa) State and prove pumping lemma.
[OR]
b) Show that a intersection of two regular languages is regular.
c)i) If L is accepted by a NFA with \in - transaction then show that L is accepted by a

NFA without \in-transection.
ii) Show that $\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)^{*}=(\mathbf{0}+\mathbf{1})^{*}$.
[OR]
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

III a) Construct a grammar to generate all five digit positive even integers.
[OR]
b) Write a grammar to generate $L=\left\{w w^{R} / w \in(a, b, c)^{*}\right\}$.
c i) Discuss about elimination of unit productions and give an example.
ii) Write about Chomskey's Hierarchy of grammars.
[OR]
di) Eliminate the useless symbols from the grammar with the following production rules $\mathrm{S} \rightarrow \mathrm{aA} / \mathrm{a} / \mathrm{Bb} / \mathrm{cC}, \quad \mathrm{A} \rightarrow \mathrm{aB}, \mathrm{B} \rightarrow \mathrm{a} / \mathrm{Aa}, \mathrm{C} \rightarrow \mathrm{cCD}, \mathrm{D} \rightarrow \mathrm{ddd}$
ii) Write about CNF. Convert the grammar with productions $\mathrm{S} \rightarrow \mathrm{aABA}$
$\mathrm{A} \rightarrow \mathrm{abABa} / \mathrm{a}, \mathrm{B} \rightarrow \mathrm{BAa} / \mathrm{b}$ into CNF.
IV a) Define ambiguous grammar and give an example.
[OR]
b) Define parse trees and give an example.
c) If a language L is accepted by a PDA A by final state then prove that there exist a PDA B accepts the same language L by empty stack.
[OR]
d) Design a PDA to accept the set $L=\left\{w c w^{R} / w \in(0,1) *\right\}$ by
(1) Empty stack.
(2) Final state.

V a) Define a Turing Machine and moves of a Turing Machine.
[OR]
b) Write about any two programming techniques of a Turing machine .
c) Design a TM to to accept $L=\left\{0^{n} 1^{n} 2^{n} / n \geq 1\right\}$.
[OR]
d) Design a Turing Machine for multiplication.

