LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION – **PHYSICS**

FOURTHSEMESTER – APRIL 2018

MT 4200- ADVANCED MATHEMATICS FOR PHYSICS

Date: 02-05-2018 Time: 09:00-12:00

LIN VEST

Dept. No.

Max.: 100 Marks

SECTION A

(10x2 = 20)

(5x8 = 40)

1. Evaluate $\int \left(x + \frac{1}{x}\right)^2 dx$.

Answer ALL the questions:

- 2. Write any two properties of definite integrals.
- 3. Define exact differential equation.

4. Solve
$$\frac{dy}{dx} = \frac{y+2}{x-1}$$
.

- 5. Evaluate $\int_0^a \int_0^b (x^2 + y^2) dx dy$.
- 6. Prove that $\beta(m,n) = \beta(n,m)$.
- 7. Prove that $\nabla r = 3$ and $\nabla \times r = 0$.
- 8. State Gauss Divergence theorem.
- 9. Define a cyclic group and give an example.

10. Define Kronecker's delta.

SECTION B

Answer any **FIVE** questions:

11. Evaluate $\int (\log x)^2 dx$ using integration by parts method.

12. Prove that $\int_{0}^{\pi} \theta \sin^{3} \theta d\theta = \frac{2\pi}{3}.$ 13. Solve $y^{2} + x^{2} \frac{dy}{dx} = xy \frac{dy}{dx}.$ 14. Solve $(D-1)^{2} y = x.$ 15. Evaluate $\iint (x^{2} + y^{2}) dx dy$ over the region for which x, y are each ≥ 0 and $x + y \le 1.$ 16. If $A_{r}^{p q}$ and B_{t}^{s} are tensors, prove that $C_{rt}^{p q s} = A_{r}^{p q} - B_{t}^{s}$ is also a tensor. 17. Compute the divergence and curl of the vector $F = xyzi + 3x^{2}yj + (xz^{2} - y^{2}z)k$ at (1, 2, -1). 18. A non-empty subset H of a group G is a subgroup of G if and only if

(i) $a, b \in H$ implies that $ab \in H$ (ii) $a \in H$ implies that $a^{-1} \in H$.

SECTION C

Answer any **TWO** questions:

19. (a) Evaluate $\int \frac{3x+1}{(x-1)^2(x+3)} dx$. (b)Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series with period 2π , to be valid in the interval 0 to 2π And also Deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ... = \frac{\pi}{4}$. (8+12)20. (a) Solve $(D^2 - 5D + 6)y = e^{4x}$. (b) Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$. (10+10)21. (a) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

(b) Find the Jacobian of x, y, z with respect to r, φ, θ where (r, φ, θ) are spherical coordinates.

$$+5)$$

22. (a) Evaluate $\iint (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$ over the surface bounded by z = 0, z = c, $x^2 + y^2 = a^2$ using Green's theorem.

(b) Show that $G = \{1, -1, i, -i\}$ is an abelian group under usual multiplication.

(12 + 8)

(15