B.Sc.DEGREE EXAMINATION -MATHEMATICS

FOURTH SEMESTER - APRIL 2018
MT 4502/ MT 4500 - MODERN ALGEBRA

Date: 09-05-2018
Time: 01:00-04:00
PART - A
ANSWER ALL QUESTIONS
($10 \times 2=20$)

1. Give an example of a one to one onto function.
2. Define partially ordered and totally ordered set.
3. Define cyclic group. Give an example.
4. Define a normal subgroup with an example.
5. Define homomorphism.
6. Define odd and even permutations.
7. Define a field with an example.
8. Define an integral domain.
9. Define maximal ideal.
10. State Unique factorization theorem.

PART - B

ANSWER ANY FIVE QUESTIONS.
11. Show that every group of order four is abelian.
12. Prove that there is a one to one correspondence between any two left cosets of a subgroup H in a group G.
13. Show that the intersection of two normal subgroups is again a normal subgroup.
14. Prove that the kernel of a homomorphism f in a group G is a normal subgroup of G .
15. State andprove second isomorphism theorem.
16. Prove that every finite integral domain is a field.
17. Prove that every field is a PID.
18. Let R be a commutative ring with unity and M an ideal of R. Then prove that M is a maximal ideal of R if and only if R / M is a field.

PART - C

ANSWER ANY TWO QUESTIONS.

19. a. Show that a group G cannot be the union of two proper subgroups.
(10+10)
b. If H and K are finite subgroups of a group G, then prove that $o(H K)=\frac{o(H) o(K)}{o(H \cap K)}$.
20. a. State and prove Lagrange's theorem.
b. State and prove Cayley theorem.
(10+10)
21. a. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field.
b. If p is prime then prove that Z_{p} is a field.
22. a. Prove that an ideal of the Euclidean ring R is a maximal ideal of R if and only if it is generated by a prime element of R.
b. Let R be a commutative ring with unity and P an ideal of R. Prove that P is a pime ideal of R if and only if R / P is an integral domain.
