LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
B.Sc. DEGREE EXAMINATIO		-MATHEMATICS
<u> </u>	FOURTH SEMESTER – APRIL 2018	
MT 4502/ MT 4500 – MODERN ALGEBRA		
Date: 09-05-2018 Time: 01:00-04:00	Dept. No.	Max. : 100 Marks
PART – A		
ANSWER ALL QUESTIONS		(10 x 2 = 20)
1. Give an example of a one to one onto function.		
2. Define partially ordered and totally ordered set.		
3. Define cyclic group. Give an example.		
4. Define a normal subgroup with an example.		
5. Define homomorphism.		
6. Define odd and even permutations.		
7. Define a field with an example.		
8. Define an integral dom		
9. Define maximal ideal.		
10. State Unique factorization theorem.		
PART – B		
ANSWER ANY FIVE QUESTIONS.		$(5 \times 8 = 40)$
11. Show that every group		

- 12. Prove that there is a one to one correspondence between any two left cosets of a subgroup H in a group G.
- 13. Show that the intersection of two normal subgroups is again a normal subgroup.
- 14. Prove that the kernel of a homomorphism f in a group G is a normal subgroup of G.
- 15. State and prove second isomorphism theorem.
- 16. Prove that every finite integral domain is a field.
- 17. Prove that every field is a PID.

18. Let R be a commutative ring with unity and M an ideal of R. Then prove that M is a maximal ideal of R if and only if R/M is a field.

PART - C

ANSWER ANY TWO QUESTIONS.

19. a. Show that a group G cannot be the union of two proper subgroups. (10+10)

b. If H and K are finite subgroups of a group G, then prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.

20. a. State and prove Lagrange's theorem.

b. State and prove Cayley theorem. (10+10)

21. a. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove

that R is a field.

b. If p is prime then prove that Z_p is a field. (10+10)

22. a. Prove that an ideal of the Euclidean ring R is a maximal ideal of R if and only if it is generated by

a prime element of R.

b. Let R be a commutative ring with unity and P an ideal of R. Prove that P is a pime ideal of R if

and only if R/P is an integral domain.

(10+10)

 $(2 \times 20 = 40)$
