LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER - APRIL 2018
MT 4815- ADVANCED GRAPH THEORY

Date: 07-05-2018
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

Answer ALL the questions. Each question carries equal marks.

1. a) Show that $\Gamma(G)=\Gamma\left(G^{c}\right)$ for a simple graph G.
b) Show that a sequence $\left(d_{1}, d_{2} \ldots d_{n}\right)$ of non-negative integers is a degree sequence of some graph if and only if $\sum_{i=1}^{n} d_{i}$ is even.
c) (i) Derive a characterization for bipartite graphs.
(ii) Show that if a k-regular bipartite graph with $k>0$ has a bipartition (X, Y), then $|X|=|Y|$.

$$
(10+5)
$$

OR
d) State Dijkstra's Algorithm. Use it, to determine the shortest path / distance between the vertex a and all other vertices of the following graph.

2. a) Prove that an edge e of a graph G is a cut edge of G if and only if e is contained in no cycle of G.

OR
b) Show that the closure of a graph G is well defined.
c) (i) Find $\tau\left(K_{n}\right)$.
(ii) Derive the sufficient condition for a graph to be hamiltonian.

OR
d) Explain Chinese Postman Problem. State Fleury's algorithm for Eulerian graphs. Obtain an optimal tour in the following weighted connected graph.

3. a) Prove that a matching M in a graph G is a maximum matching if and only if G contains no M augmenting path.

OR
b) If G is a bipartite graph, prove that $\chi^{\prime}=\Delta$.
c) State and prove Hall's theorem.
d) Derive the necessary and sufficient condition for a graph to have a perfect matching.
4. a) Prove, with usual notation, that $\alpha^{\prime}+\beta^{\prime}=v$, if $\delta>0$.

OR
b) If G is a simple graph, prove that $\pi_{k}(G)=\pi_{k}(G-e)-\pi_{k}(G . e)$ for any edge e of G.
c) State and prove Dirac's theorem.

OR
d) State and prove Brook's theorem.
5. a) Prove that K_{5} is planar.

OR
b) Let G be a nonplanar connected graph that contains no subdivision of K_{5} or $K_{3,3}$ and has as few edges as possible. Prove that G is simple and 3 -connected.
c) (i) State and prove Five-color theorem.
(ii) Find Euler's formula which relates the numbers of vertices, edges and faces in a connected plane graph.
($9+6$)
OR
d) State and prove Kuratowski's theorem.
