LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **MATHEMATICS**

FOURTHSEMESTER – APRIL 2018

MT 4815- ADVANCED GRAPH THEORY

Date: 07-05-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

(5)

(10 + 5)

Answer ALL the questions. Each question carries equal marks.

- 1. a) Show that $\Gamma(G) = \Gamma(G^c)$ for a simple graph G.
 - b) Show that a sequence $(d_1, d_2 \dots d_n)$ of non-negative integers is a degree sequence of some graph if and only if $\sum_{i=1}^{n} d_i$ is even. (5)

OR

c) (i) Derive a characterization for bipartite graphs. (ii) Show that if a k-regular bipartite graph with k > 0 has a bipartition (*X*, *Y*), then |X| = |Y|.

OR

d) State Dijkstra's Algorithm. Use it, to determine the shortest path / distance between the vertex a and all other vertices of the following graph.

2. a) Prove that an edge *e* of a graph *G* is a cut edge of *G* if and only if *e* is contained in no cycle of *G*.

OR b) Show that the closure of a graph G is well defined.

c) (i) Find $\tau(K_n)$. (ii) Derive the sufficient condition for a graph to be hamiltonian.

OR

d) Explain Chinese Postman Problem. State Fleury's algorithm for Eulerian graphs. Obtain an optimal tour in the following weighted connected graph.

(5)

(7 + 8)

3.	a) Prove that a matching M in a graph G is a maximum matching if and only if G contains no M -augmenting path. (5)		
	OR		
	b) If G is a bipartite graph, prove that $\chi' = \Delta$.	(5)	
	c) State and prove Hall's theorem.	(15)	
	OR	× ,	
	d) Derive the necessary and sufficient condition for a graph to have a perfect matching		
	(15)		
		(13)	
4	a) Prove with your potation that $\alpha' + \beta' - \mu$ if $\delta > 0$	(5)	
4.	a) Prove, with usual notation, that $\alpha + p = v$, if $\sigma > 0$.	(3)	
	OR		
	b) If G is a simple graph, prove that $\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e)$ for any edge e of G.		
		(5)	
	c) State and prove Dirac's theorem.	(15)	
OR			
	d) State and prove Brook's theorem	(15)	
	d) State and prove brook 5 theorem.	(15)	
5	a) Prove that K_{τ} is planar	(5)	
5.	a) I fove that K_5 is plana.	(3)	
	VK		
	b) Let G be a nonplanar connected graph that contains no subdivision of K_5 or $K_{3,3}$ and has as few edge		
	as possible. Prove that G is simple and 3-connected.	(5)	
	c) (i) State and prove Five-color theorem.		
	(ii) Find Euler's formula which relates the numbers of vertices, edges and faces in a connected plane		
	graph.	(9+6)	
	OR		
	d) State and prove Kuratowski's theorem.	(15)	
	· · · · · · · · · · · · · · · · · · ·		