LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTHSEMESTER – APRIL 2018

LINK

MT 4816- FLUID DYNAMICS

Da Tir	nte: 08-05-2018 Dept. No.	Max. : 100 Marks	
	Answer ALL Questions.		
1.	a) Briefly explain the classification of fluids.		
	b) Derive the velocity and acceleration of a fluid particle.	(5)	
	c) If the velocity of an incompressible fluid at the point (x)	y, z) is given by $\left(\frac{3xz}{r^5}, \frac{3yz}{r^5}, \frac{3z^2 - r^2}{r^5}\right)$ where	
	$r^2 = x^2 + y^2 + z^2$, show that the fluid motion is possible a of streamlines. (15)	nd velocity potential is $\frac{\cos\theta}{r^2}$. Find the equation	
	d) The velocity component of a three dimensional f	low filed for an incompressible fluids are	
	(2x, -y, -z). Is it a possible field? Determine the equation of the stream line passing through the point		
	(1, 1, 1).e) Derive the equation of stream lines.	(9 + 6)	
2	a) State and prove Kelvin's circulation theorem.		
	OR		
	b) Derive Euler's equation of motion.	(5)	
	c) Discuss the fluid flow of stationery sphere in a uniform OR	stream. (15)	
	d) State and prove Helm Hortz vorticity theorem.e) State and derive the Bernoulli's equation of motion.	(8 + 7)	
3.	a) Show that $u = 2Axy$, $v = A(a^2 + x^2 - y^2)$ are the determine the stream functions.	velocity components of the possible motion	
	OR		
	b) State and prove Milne Thompson circulation theorem.	(5)	
	c) State and prove Blasius theorem.		
	d) Analyze the fluid motion of a particle whose CP is $w =$	$U\left(z+\frac{a^2}{z}\right).$ (15)	
4.	 4. a) Show that a circular cylinder moving with a velocity U and having a circulation μ will experience lift perpendicular to the motion of the cylinder. 		
	b) State and prove Kutta Joukowski theorem.	(5)	
	c) State and prove Butler sphere theorem.		

	OR					
	d) Explain the construction of Aerofoil.	(15)				
5.	a) Prove that in the slow steady motion of viscous liquid in two dimensional	$\upsilon \nabla^4 \phi = \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}$	where			
	(X,Y) is the impressed force per unit area.					
	OR					
	b) Derive the equation satisfied by vorticity in the case of viscous incompressible fluid motion,					
	that $\frac{d\overline{\xi}}{dt} = (\overline{\xi \Box V}) \overrightarrow{q} + \upsilon \nabla^2 \xi$. (5)					
c) Derive the Navier-Stokes equation of motion for viscous fluid. OR						
	d) Discuss the viscous flow through a tube of uniform circular cross-section.	(15)				
