B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTHSEMESTER - APRIL 2018
MT 5405- FLUID DYNAMICS

Date: 08-05-2018
Dept. No. \square Max. : 100 Marks

SECTION A

Answer ALL questions:

1. Define stream lines.
2. Show that $\vec{q}=2 x \vec{\imath}-y \vec{\jmath}-z \vec{k}$ is a possible motion.
3. The velocity vector \vec{q} is given by $\vec{q}=\vec{\imath} x-\vec{\jmath} y$, determine the equation of stream line.
4. Write down the boundary condition that the flow when it is at rest.
5. What is the complex potential of a source with strength m situated at the points $z=z_{1}$?
6. Find the stream function ψ, if $\varphi=A\left(x^{2}-y^{2}\right)$ represents a possible fluid motion.
7. Find the vorticity components of a fluid motion, if the velocity components are $u=A y^{2}+B y+C, v=0, w=0$.
8. Define vortex tube and vortex filament.
9. Find the vorticity vector for the velocity $\vec{q}=u \vec{\imath}+v \vec{\jmath}$
10. Define a two- dimensional sink and source.

SECTION B

Answer any FIVE questions:
11. The velocity \vec{q} in a 3-dimensional flow field for an incompressible fluid is $\vec{q}=2 \times \vec{\imath}-y \vec{\jmath}-z \vec{k}$. Determine the equation of streamlines passing through the point $(1,1,1)$.
12. Find the equation of streamlines and path lines of a flow given by $u=\frac{x}{1+t}, v=\frac{y}{1+t}, w=\frac{z}{1+t}$.
13. Derive the equation of continuity.
14. Prove that for the complex potential $\tan ^{-1} z$ the streamlines and equipotentials are circles.
15. Obtain the complex potential due to the image of a source with respect to a plane.
16. Show that the velocity vector \vec{q} is every where tangent to the lines in the $X Y$-plane along which $\psi(x$, $y)=$ a constant.
17. Let $\vec{q}=(A z-B y) \vec{\imath}+(B x-C z) \vec{\jmath}+(C y-A x) \vec{k},(A, B, C$ are constants) be the velocity vector of a fluid motion. Find the equation of vortex lines.
18. If the velocity of an incompressible fluid at the point (x, y, z) is given by $\left(\frac{3 x z}{r^{5}}, \frac{3 y z}{r^{5}}, \frac{3 z^{2}-r^{2}}{r^{5}}\right)$ where $r^{2}=x^{2}+y^{2}+z^{2}$. Prove that the fluid motion is possible and the velocity potential is $\frac{\cos \theta}{r^{2}}$.

SECTION C

Answer any TWO questions:
19. (a).The velocity components for a two dimensional fluid system can be given in the Eulerian system by $u=2 x+2 y+3 t, v=x+y+\frac{t}{2}$. Find the displacement of a fluid particle in the Lagrangian system.
(b) Draw and explain the working of a Venturi tube.
20. Derive the Euler's equation of motion and deduce the Bernoulli's equation of motion.
21. (a)What arrangement of sources and sinks will give rise to the function $w=\log \left(z-\frac{a^{2}}{z}\right)$?
(b)Obtain the complex potential due to the image of a source with respect to a circle. $\quad(12+8)$
22. (a)Discuss the structure of an aerofoil.
(b)Derive Joukowski transformation

$$
(10+10)
$$

\$\$\$\$\$\$\$

