LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

FIFTHSEMESTER - APRIL 2018
MT 5406- COMBINATORICS

Date: 10-05-2018
Time: 09:00-12:00

B.Sc.DEGREE EXAMINATION - MATHEMATICS

Dept. No. \square Max. : 100 Marks

Part A

Answer ALL questions:
$(10 \times 2=20)$

1. Define falling factorial.
2. How many 7 letter words of binary digits are there?
3. In an examination a candidate has to pass in each of the five papers. How many different combinations of papers are there so that a student may fail?
4. Define Stirling number of second kind.
5. Define recurrence relation.
6. State generalized inclusion and exclusion principle.
7. Define permanent of a matrix.
8. Define derangement.
9. Find Euler's number for $n=100$.
10. Define cycle index of a permutation group.

Part B

Answer any FIVE questions:
11. There are 30 girls and 35 boys in a junior class while there are 25 girls and 20 boys in a senior class. In how many ways can a committee of 10 be chosen, so that there are exactly 5 girls and 3 juniors in the committee?
12. Prove that the number of distributions of n objects into m distinct boxes with the objects in each box arranged in a definite order is the rising factorial $[m]^{n}$.
13. State and prove multinomial theorem.
14. Derive the Pascals's identity using the concept of generating functions.
15. Derive the formula to find the sum of first n natural numbers using its recurrence formula given by $a_{n}-a_{n-1}=1, n \geq 1$.
16. Determine the permanent of the matrix $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1\end{array}\right]$.
17. Find the rook polynomial for the following chess board C.

18. State and prove Sieve's formula.

Part C

Answer any TWO questions:
19. (a) Derive the recurrence formula for S_{n}^{m}. Formulate a table for S_{5}^{5}.
(b) If there exists a bijection between the set of n-letter words with distinct letters out of an alphabet of m letters and the set of n-tuples on m letters without repetition, then show that the cardinality of each of these sets is $m(m-1)(m-2) \ldots(m-n+1)$. $(10+10)$
20. (a) In a town council there are 10 democrats and 11 republicans. There are 4 women among the democrats and 3 women among the republicans. Find the number of ways of planning committee of 8 councillors in a such a way that there are equal number of men and women and equal members from both parties.
(b) Show that the number of derangements of set with n objects is $D_{n}=n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+\right.$ $(-1)^{n} \frac{1}{n!}$.
21. State and prove ménage problem.
22. State and prove Burnside's lemma.

