## B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTHSEMESTER - APRIL 2018
MT 5407- FORMAL LANGUAGES AND AUTOMATA

Date: 10-05-2018
Time: 09:00-12:00
Dept. No. $\square$ Max. : 100 Marks

## PART-A

Answer ALL the questions:
( $10 \times 2=20$ )

1. Write any two differences between DFA and NFA.
2. Draw a DFA accepting the set of all strings over $\{0,1\}$ with three consecutive zero's.
3. Define a context free grammar.
4. Show that the grammar $G=(\{S\},\{a\}, S \rightarrow S S, S \rightarrow a, S)$ is ambiguous.
5. Define a derivation tree.
6. Define a star closure.
7. Define an free homomorphism.
8. Write a grammar for the language $L=\left\{\begin{array}{ll}a^{n} b^{n} / n & 1\end{array}\right\}$.
9. Define unit production.
10. Define Greibach normal form.

## PART-B

## Answer any FIVE questions:

11. Construct a DFA to accept set of strings over $(0,1)$ where the string is considered as a binary integer divisible by 3 .
12. Eliminate the $\in$ - production for the following set of production rules
$S \rightarrow A B, A \rightarrow a A A / \in, B \rightarrow b B B / \in$.
13. Let $G=\{N, T, P, S\} N=\{S, B\}$ and $T=\{a, b, c\} . P$ consists of the following productions:
(i) $S \rightarrow a S B$
(iii) $b B \rightarrow b b c$
(ii) $S \rightarrow a b c$
(iv) $c B \rightarrow B c$

Show that $L(G)=\left\{a^{n} b^{n} c^{n} / n \quad 1\right\}$ is a $C S L$.
14. Prove that union of two regular set is regular.
15. Let $G=\{N, T, P, S\}$, where $N=\{S, A\} T=\{a, b\}$ and $P$ consists of the rules

1. $S \rightarrow a A b$
2. $S \rightarrow a b S b$
3. $S \rightarrow a$
4. $A \rightarrow b S$
5. $A \rightarrow a A A b$

Find the leftmost and rightmost derivations for the string $a b a b$.
16. Prove that the families of $P S L, C S L, C F L$ and $R L$ are closed under union.
17. State and prove the pumping lemma.
18. Prove that $L(G)=\left\{a^{n} b^{n} c^{n} / n \quad 1\right\}$ is not a Context Free Language (CFL).

## PART - C

## Answer any TWO questions:

19. (i) Consider the grammar $G=\{N, T, P, S\}$ where

$$
\begin{aligned}
& N=\left\{S,\left(P_{r}\right),(V P), V,(N P), A, N,(A u x), P\right\}, T=\{\text { They, are, flying, planes }\}, \\
& P=\left\{\begin{array}{l}
S \rightarrow\left(P_{r}\right)(V P), P_{r} \rightarrow \text { They, } V P \rightarrow(V)(N P), V \rightarrow \text { are }, N P \rightarrow(A)(N), \\
A \rightarrow \text { flying, } N \rightarrow \text { planes, } V \rightarrow(\text { Aux })(P), \text { Aux } \rightarrow \text { are, } N P \rightarrow N, P \rightarrow \text { flying }
\end{array}\right\}, \text { and }
\end{aligned}
$$

$S$ is the start symbol, generate the language consisting of the single sentence,
\{They are flying planes\}.
(ii) Show that id+id*id can be generated by two distinct leftmost and right most derivation in the grammar $E \rightarrow E+E / E * E / E / i d$.
20. Construct a deterministic finite automaton (FA) equivalent to a given NFA where,
$M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\},, q_{0},\left\{q_{3}\right\}\right), \quad$ is given in the following table:

| $\delta$ | $a$ | $b$ |
| :--- | :--- | :--- |
| $q_{0}$ | $\left\{q_{0}, q_{1}\right\}$ | $\left\{q_{0}\right\}$ |
| $q_{1}$ | $\phi$ | $\left\{q_{2}\right\}$ |
| $q_{2}$ | $\phi$ | $\phi$ |

21. (i) Let $G=(\{\mathrm{S}, Z, A, B\},\{a, b\}, P, S)$ where P consists of the following productions:
22. $S \rightarrow a S A$
23. $S \rightarrow a Z A$
24. $Z \rightarrow b Z B$
25. $Z \rightarrow b B$
26. $B A \rightarrow A B$
27. $A B \rightarrow A b$
$7 . b B \rightarrow b b$
$8 . b A \rightarrow b a$
28. $a A \rightarrow a a$

Show that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, m \geq 1\right\}$.
(ii) Prove that the family of CFL is closed under substitution.
22. (i) Write a brief note on Chomsky Hierarchy.
(ii) Write a grammar CNF equivalent to a grammar whose production rules are $S \rightarrow a A b B, A \rightarrow a A / a, B \rightarrow b B / b$.

