LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTHSEMESTER - APRIL 2018

MT 5407- FORMAL LANGUAGES AND AUTOMATA

Date:	10-05-2018
Time:	09:00-12:00

Dept. No.

Max.: 100 Marks

PART-A

Answer ALL the questions:

 $(10 \times 2=20)$

- 1. Write any two differences between DFA and NFA.
- 2. Draw a DFA accepting the set of all strings over {0, 1} with three consecutive zero's.
- 3. Define a context free grammar.
- 4. Show that the grammar $G = (\{S\}, \{a\}, S \to SS, S \to a, S)$ is ambiguous.
- 5. Define a derivation tree.
- 6. Define a star closure.
- 7. Define an θ free homomorphism.
- 8. Write a grammar for the language $L = \{a^n b^n / n \ ^3 1\}$.
- 9. Define unit production.
- 10. Define Greibach normal form.

PART-B

Answer any FIVE questions:

 $(5 \times 8=40)$

- 11. Construct a DFA to accept set of strings over (0,1) where the string is considered as a binary integer divisible by 3.
- 12. Eliminate the \in production for the following set of production rules

$$S \rightarrow AB, A \rightarrow aAA/ \in B \rightarrow bBB/ \in .$$

13. Let $G = \{N, T, P, S\}$ $N = \{S, B\}$ and $T = \{a, b, c\}$. P consists of the following productions:

(i)
$$S \rightarrow aSB$$
 (iii) $bB \rightarrow bbc$

(iii)
$$hR \rightarrow hhc$$

(ii)
$$S \rightarrow abc$$
 (iv) $cB \rightarrow Bc$

(iv)
$$cB \rightarrow Bc$$

Show that
$$L(G) = \{a^n b^n c^n / n \ ^3 1\}$$
 is a *CSL*.

14. Prove that union of two regular set is regular.

15. Let $G = \{N, T, P, S\}$, where $N = \{S, A\}$ $T = \{a, b\}$ and P consists of the rules

1.
$$S \rightarrow aAb$$

$$2 \text{ S} \Rightarrow ab\text{S}b$$

$$3 \hookrightarrow a$$

$$1 \longrightarrow bS$$

1.
$$S \rightarrow aAb$$
 2. $S \rightarrow abSb$ 3. $S \rightarrow a$ 4. $A \rightarrow bS$ 5. $A \rightarrow aAAb$

Find the leftmost and rightmost derivations for the string *abab*.

- 16. Prove that the families of *PSL*, *CSL*, *CFL* and *RL* are closed under union.
- 17. State and prove the pumping lemma.
- 18. Prove that $L(G) = \{a^n b^n c^n / n \ ^3 1\}$ is not a Context Free Language (CFL).

PART - C

Answer any TWO questions:

 $(2 \times 20=40)$

19. (i) Consider the grammar $G = \{N, T, P, S\}$ where

$$N = \{S, (P_r), (VP), V, (NP), A, N, (Aux), P\}, T = \{They, are, flying, planes\},$$

$$P = \begin{cases} S \to (P_r)(VP), P_r \to They, VP \to (V)(NP), V \to are, NP \to (A)(N), \\ A \to flying, N \to planes, V \to (Aux)(P), Aux \to are, NP \to N, P \to flying \end{cases}, \text{ and } V \to (P_r)(VP), P_r \to They, VP \to (V)(NP), V \to are, NP \to (A)(N), Aux \to are, NP \to N, P \to flying \end{cases}$$

S is the start symbol, generate the language consisting of the single sentence,

{They are flying planes}.

- (ii) Show that id+id*id can be generated by two distinct leftmost and right most derivation in the grammar $E \rightarrow E + E/E * E/E/id$. (12+8)
- 20. Construct a deterministic finite automaton (FA) equivalent to a given NFA where,

 $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \mathcal{O}, q_0, \{q_3\}), \mathcal{O}$ is given in the following table:

δ	а	b
q_0	$\left\{q_0,q_1 ight\}$	$\{q_{_0}\}$
q_1	ϕ	$\{q_{_2}\}$
q_2	φ	φ

- 21. (i) Let $G = (\{S, Z, A, B\}, \{a, b\}, P, S)$ where P consists of the following productions:
 - 1. $S \rightarrow aSA$
- 2. *S*→*aZA*
- 3. $Z \rightarrow bZB$

- 4. $Z \rightarrow bB$
- 5. $BA \rightarrow AB$ 6. $AB \rightarrow Ab$

- $7.bB \rightarrow bb$
- $8.bA \rightarrow ba$
- 9.*aA*→*aa*

Show that $L(G) = \{a^n b^m a^n b^m / n, m \ge 1\}$.

- (ii) Prove that the family of CFL is closed under substitution. (12+8)
- 22. (i) Write a brief note on Chomsky Hierarchy.
 - (ii) Write a grammar CNF equivalent to a grammar whose production rules are $S \rightarrow aAbB, A \rightarrow aA/a, B \rightarrow bB/b$. (10+10)
