LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

FIFTH SEMESTER - APRIL 2018

MT 5508/ MT 5502 - LINEAR ALGEBRA

Date: 04-05-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

(10 * 2 = 20 marks)

(5 * 8 = 40 marks)

PART A

ANSWER ALL THE QUESTIONS

- 1. Define a vector space V over a field F.
- 2. Express the vector (1,-2,5) as a linear combination of the vectors (1,1,1), (1,2,3) and (2,-1,1) in \mathbb{R}^3 where \mathcal{R} is the field of real numbers.
- 3. Prove that the vectors (1,0,0), (1,1,0) and (1,1,1) form a basis of R^3 , where R is the field of real numbers.
- 4. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$.
- 5. Define orthonormal set.
- 6. Let $T \in A(v)$ and $\lambda \in F$. If $\lambda I T$ is singular then prove that λ is an eigenvalue of T.
- 7. Define trace of a matrix and give an example.
- 8. If A is any square matrix, prove that $A + A^t$ is symmetric and $A A^t$ is a skew-symetric.

9. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.

10. Define unitary linear transformation.

PART B

ANSWER ANY FIVE QUESTIONS

- 11. Prove that the union of two subspaces of a vector spaces V over F is a subspace of V if and only if one is contained in the other.
- 12. Show that a nonempty subset W of a vector space V over F is a subspace of V if and only if $aw_1 + bw_2 \in W for all a, b \in F, w_1, w_2 \in W.$
- 13. Let V be a vector space and suppose that one basis has n elements and another basis has m elements .Then prove that m = n.
- 14. If A and B are subspaces of a vector space Vover F, prove that $(A+B)/B \cong A/A \cap B$.
- 15. Apply the Gram-Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of R^4 generated by the vectors (1,1,0,1), (1,-2,0,0), and (1,0,-1,2).

- 16. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigenvalue of f(T).
- 17. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
- 18. a) If *T* ∈ *A*(*V*) is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.
 b)Prove that the eigenvalues of a unitary transformation are all of absolute value 1.

PART C

ANSWERANY TWO QUESTIONS

19. a) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only

(2 * 20 = 40 marks)

if
$$V = W_1 + W_2$$
 and $W_1 \cap W_2 = (0)$.

b) If S and T are subsets of a vector space V over F, then prove that

$$L(S \cup T) = L(S) + L(T).$$

- 20. If *V* is a vector space of finite dimension and is the direct sum of its subspaces *U* and *W* then prove that dim $V = dimU + \dim W$.
- 21. State and prove Gram-Schmidt orthonormalization process.
- 22. a) If $A, B \in F_n$ and if $\lambda \in F$, then prove that

i)
$$(\lambda A)^t = \lambda A^t$$

ii)
$$(A^t)^t = A$$

iii)
$$(A+B)^t = A^t + B^t$$

iv)
$$(AB)^t = B^t A^t$$

b) Investigate for what values of λ , μ the system of equations

 $x_1 + x_2 + x_3 = 6$, $x_1 + 2x_2 + 3x_3 = 10$, $x_1 + 2x_2 + \lambda x_3 = \mu$ over the rational field has a) no solution b) a unique solution c) an infinite number of solutions.
