LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

Date: 04-05-2018
B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - APRIL 2018
MT 5508/ MT 5502 - LINEAR ALGEBRA

PART A

ANSWER ALL THE QUESTIONS

$$
(10 * 2=20 m a r k s)
$$

1. Define a vector space V over a field F.
2. Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in \mathcal{R}^{3} where \mathcal{R} is the field of real numbers.
3. Prove that the vectors $(1,0,0),(1,1,0)$ and $(1,1,1)$ form a basis of R^{3}, where R is the field of real numbers.
4. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$.
5. Define orthonormal set.
6. Let $T \in A(v)$ and $\lambda \in F$. If $\lambda I-T$ is singular then prove that λ is an eigenvalue of T.
7. Define trace of a matrix and give an example.
8. If A is any square matrix, prove that $A+A^{t}$ is symmetric and $A-A^{t}$ is a skew-symetric.
9. Find the rank of the matrix $\mathrm{A}=\left(\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right)$ over the field of rational numbers.
10. Define unitary linear transformation.

PART B

ANSWER ANY FIVE QUESTIONS

$$
(5 * 8=40 \mathrm{marks})
$$

11. Prove that the union of two subspaces of a vector spaces V over F is a subspace of V if and only if one is contained in the other.
12. Show that a nonempty subset W of a vector space V over F is a subspace of V if and only if $a w_{1}+b w_{2} \in$ Wforalla, $b \in F, w_{1}, w_{2} \in W$.
13. Let V be a vector space and suppose that one basis has n elements and another basis has m elements .Then prove that $m=n$.
14. If A and B are subspaces of a vector space V over F, prove that $(A+B) / B \cong A / A \cap B$.
15. Apply the Gram-Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of R^{4} generated by the vectors $(1,1,0,1),(1,-2,0,0)$, and $(1,0,-1,2)$.
16. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove that for any poly nomial $f(x) \in F[x], f(\lambda)$ is an eigenvalue of $f(T)$.
17. Show that any square matrix A can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
18. a) If $T \in A(V)$ is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.
b)Prove that the eigenvalues of a unitary transformation are all of absolute value 1 .

PART C

ANSWERANY TWO QUESTIONS

$$
(2 * 20=40 \mathrm{marks})
$$

19. a) Prove that the vector space V over F is a direct sum of two of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=(0)$.
b) If S and T are subsets of a vector space V over F, then prove that

$$
L(S \cup T)=L(S)+L(T) .
$$

20. If V is a vector space of finite dimension and is the direct sum of its subspaces U and W then prove thatdim $V=\operatorname{dim} U+\operatorname{dim} W$.
21. State and prove Gram-Schmidt orthonormalization process.
22. a) If $A, B \in F_{n}$ and if $\lambda \in F$, then prove that
i) $\quad(\lambda A)^{t}=\lambda A^{t}$
ii) $\quad\left(A^{t}\right)^{t}=A$
iii) $\quad(A+B)^{t}=A^{\mathrm{t}}+B^{t}$
iv) $(A B)^{t}=B^{t} A^{t}$
b) Investigate for what values of λ, μ the system of equations $x_{1}+x_{2}+x_{3}=6, x_{1}+2 x_{2}+3 x_{3}=10, x_{1}+2 x_{2}+\lambda x_{3}=\mu$ over the rational field has a) no solution b) a unique solution c) an infinite number of solutions.
