LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - APRIL 2018
MT 5509- ALGEBRAIC STRUCTURE - II

Date: 03-05-2018
Time: 09:00-12:00
PART - A

Answer ALL the questions:
($\mathbf{1 0} \times 2=\mathbf{2 0}$ marks)

1. Define a vector space over a field F.
2. Show that the vectors $(1,1)$ and $(-3,2)$ in \mathfrak{R}^{2} are linearly independent over \mathfrak{R}, the field of real numbers.
3. Define a basis of a vector space.
4. Define a homomorphism of a vector space into itself.
5. Define an orthonormal set.
6. Normalize $\left(\frac{1}{2}, \frac{-1}{3}, \frac{1}{4}\right)$ in \mathfrak{R}^{3} relative to the standard innear product.
7. Define an algebra over a field F .
8. Show that $A=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ is unitary.
9. Define a skew symmetric matrix and give an example.
10. Define Hermitian and skew Hermitian matrices.

PART - B

Answer any FIVE questions:
11. If S and T are subsets of a vector space V over F , then prove that $\mathrm{L}(\mathrm{SUT})=\mathrm{L}(\mathrm{S})+\mathrm{L}(\mathrm{T})$.
12. Prove that the union of two subspaces of a vector space V over F is a subspace of V if and only if one is contained in the other.
13. If V is a vector space of finite dimension and W is a subspace of V , then prove that dim $\frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
14. Prove that $V \cong F^{n}, V, a$ vector space of dimension n and F^{n} is a vector space of ordered n - tuples.
15. Prove that $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is invertible if and only if the constant term of the minimal polynomial for T is non-zero.
16. For $\mathrm{A}, \mathrm{B} \in \mathrm{F}_{\mathrm{n}}, \lambda \in \mathrm{F}$, prove the following (i) $t_{r}(\lambda A)=\lambda t_{r}(A)$ (ii) $t_{r}(A+B)=t_{r}(A)+t_{r}(B)$.
17. Show that any square matrix can be expressed uniquely as the sum of symmetric and a skew symmetric matrices.
18. Show that the system of equations $x+2 y+z=11,4 x+6 y+5 z=8,2 x+2 y+3 z=19$ is inconsistent.

PART - C

Answer any TWO questions:

($\mathbf{2} \times 20=40$ marks)
19. a) Prove that a nonempty subset W of a vector space V over F is a subspace of V if and only if W is closed under addition and scalar multiplication.
b) Prove that the vector space V over F is a direct sum of two of its subspaces W_{1} and
W_{2} if and only if $\mathrm{V}=\mathrm{W}_{1}+\mathrm{W}_{2}$ and $\mathrm{W}_{1} \cap \mathrm{~W}_{2}=\{0\}$.
20. State and prove fundamental homomorphism theorem for vector spaces.
21. Prove that every finite dimensional inner product space V has an orthonormal set as a basis.
22. a) If $T \in A(V)$ is Hermitian, then prove that all its eigen values are real.
b) Prove that $T \in A(V)$ is unitary if and only if takes an orthonormal basis of V on to an orthonormal basis of V .

$$
(6+14)
$$

