LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

Date: 19-04-2018
Time: 01:00-04:00

B.Sc.DEGREE EXAMINATION -MATHEMATICS

 SIXTH SEMESTER - APRIL 2018MT 6600 / MT 6603 - COMPLEX ANALYSIS

Dept. No. \square Max. : 100 Marks

PART A
Answer all questions:
$(10 \times 2=20)$

1. Prove that for any two complex numbers z_{1} and $z_{2}| | z_{1}\left|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$.
2. Show that $3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic .
3. State Morera's theorem.
4. Evaluate $\int_{C} \frac{e^{z}}{z}$ where C is the unit circle $|z|=1$.
5. Define zeros and poles of a function.
6. Find the zeros of $f(z)=\frac{z^{2}+1}{1-z^{2}}$.
7. Define residue of a function at a point.
8. State Argument theorem.
9. Define angle of rotation.
10. Define critical point.

PART B

Answer any five questions:
11. Let $\mathrm{f}(\mathrm{z})=\left\{\begin{array}{c}\frac{x y}{x^{2}-y^{2}} \text { if } z \neq 0 \\ 0 \\ 0\end{array}\right.$ if $z=0$. . Show that $\mathrm{f}(\mathrm{z})$ satisfies CR equations at zero but not differential at $z=0$.
12. Prove that $u=2 x-x^{3}+3 x y^{2}$ is harmonic and find its harmonic conjugate.
13. Find the radius of convergence of the power series (i) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$ (ii) $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.
14. State and prove Cauchy integral formula.
15. Find the Taylors series to represent $\frac{z-1}{z+1}$ in (i) $\mathrm{z}=0$ (ii) $\mathrm{z}=1$.
16. State Maximum Modulus theorem.
17. Find the residue of the function $\frac{e^{z}}{z^{2}\left(z^{2}+9\right)}$ at its poles .
18. Define bilinear transformation and show that the transformation $\mathrm{w}=\frac{5-4 z}{4 z-2}$ maps the unit circle $|z|=1$ into a circle of radius unity and centre $-\frac{1}{2}$.

PART C

Answer any two questions:

$(2 \times 20=40)$

19 (a) Derive CR equations in polar coordinates .
(b) Prove that functions $\mathrm{f}(\mathrm{z})$ and $\overline{f(z)}$ are simultaneously analytic.

20 (a) State and prove Cauchy's theorem and show that $\mathrm{f}^{\prime}(\mathrm{z})=\frac{r}{2}\left(\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right) \cdot(\mathbf{1 2 + 8})$
(b) State and prove Liouville's theorem and deduce fundamental theorem of algebra.

21 (a) Expand $f(z)=\frac{-1}{(z-1)(z-2)}$ in a Laurent's series in

$$
\text { (i) } 1<|z|<2, \text { (ii) }|z|>2
$$

(12+8) (b)Suppose
$f(z)$ is analytic in the region D and is not identically zero in D. Show that theset of all zeros of $f(z)$ is isolated .

22 (a) Using method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
(b) Find the bilinear transformation which maps the points $-1,01$ of z plane
onto $-1,-i, 1$ of the w plane. Show that under this transformation upper half of the z plane onto the interior of the unit circle $|w|=1$.

