LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
1010	B.Sc. DEGREE EXAMINATION – MATHEMATICS
	SIXTH SEMESTER – APRIL 2018
LUCEAT LU	MT 6600 / MT 6603 - COMPLEX ANALYSIS
Date: Time:	19-04-2018 Dept. No. Max. : 100 Marks 01:00-04:00 Max. : 100 Marks
PART A	
Answ	er all questions: $(10 \times 2 = 20)$
1.	Prove that for any two complex numbers z_1 and $z_2 z_1 - z_2 \le z_1 - z_2 $.
2.	Show that $3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic.
3.	State Morera's theorem.
4.	Evaluate $\int_C \frac{e^z}{z}$ where <i>C</i> is the unit circle $ z = 1$.
5.	Define zeros and poles of a function.
6.	Find the zeros of $f(z) = \frac{z^2 + 1}{1 - z^2}$.
7.	Define residue of a function at a point.
8.	State Argument theorem.
9.	Define angle of rotation.
10.	Define critical point.
	PART B
Answ	er any five questions: $(5 \times 8 = 40)$
11.	Let $f(z) = \begin{cases} \frac{xy}{x^2 - y^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$. Show that $f(z)$ satisfies CR equations at zero but not
diff	erential at $z = 0$.
12.	Prove that $u = 2x - x^3 + 3xy^2$ is harmonic and find its harmonic conjugate.
13.	Find the radius of convergence of the power series (i) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ (ii) $\sum_{n=1}^{\infty} \frac{z^n}{n}$.
14.	State and prove Cauchy integral formula.
15.	Find the Taylors series to represent $\frac{z-1}{z+1}$ in (i) z=0 (ii) z=1.
16.	State Maximum Modulus theorem.
	1

17. Find the residue of the function $\frac{e^z}{z^2(z^2+9)}$ at its poles.

18. Define bilinear transformation and show that the transformation $w = \frac{5-4z}{4z-2}$ maps the unit circle |z| = 1 into a circle of radius unity and centre $-\frac{1}{2}$.

PART C

Answer any two questions:

 $(2\times 20=40)$

19 (a) Derive CR equations in polar coordinates .(12+8)

(b) Prove that functions f(z) and $\overline{f(z)}$ are simultaneously analytic.

20 (a) State and prove Cauchy's theorem and show that $f'(z) = \frac{r}{2} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) \cdot (12+8)$

(b) State and prove Liouville's theorem and deduce fundamental theorem of algebra.

21 (a) Expand
$$f(z) = \frac{-1}{(z-1)(z-2)}$$
 in a Laurent's series in
(i) $1 < |z| < 2$, (ii) $|z| > 2$. (12+8) (b)Suppose

f(z) is analytic in the region D and is not identically zero in D.Show that theset of all zeros of f(z) is isolated.

22 (a) Using method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$.

(b) Find the bilinear transformation which maps the points -1, 0 1 of z plane onto -1, -i, 1 of the w plane. Show that under this transformation upper half of the z plane onto the interior of the unit circle |w| = 1.
