LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

SIXTH SEMESTER - APRIL 2018

MT 6606– COMPLEX ANALYSIS

Date: 17-04-2018 Time: 09:00-12:00

PART-A

Verify Cauchy-Riemann equations for the function $f(z) = z^3$. 1.

Dept. No.

- 2. Sh
- Fir e critical points. 3.
- 4. De

ANSWER ALL THE QUESTIONS:

5. Us = 4.

- 6. Ev
- 7. Fir
- 8. W₁
- 9. Fir
- 10. State Cauchy's residue theorem.

PART-B

ANSWER ANY FIVE QUESTIONS:

11. Prove that $f(z) = \sin x \cosh y + i \cos x \sinh y$ is differentiable at every point.

12. If f(z) is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$.

13. Find the bilinear transformation which maps the points $z_1 = 2, z_2 = i, z_3 = -2$ onto

 $w_1 = 1, w_2 = i, w_3 = -1$ respectively.

14. State and prove Liouville's theorem.

ow that
$$u = log\sqrt{x^2 + y^2}$$
 is harmonic.
Ind the points where the mapping $w = e^z$ is conformal. Also find the effine a bilinear transformation.
Sing Cauchy's Integral formula, evaluate $\frac{1}{2\pi i} \int_C \frac{z^2 + 5}{z - 3} dz$ where C is $|z|$
raluate $\int_C \frac{e^z}{z^n} dz$ where C is the circle $|z| = 1$.
Ind the poles of $f(z) = \frac{z^2 - 2z + 3}{z - 2}$
rite Maclaurin's series expansion of *sinz*.
Ind the residue of $\frac{ze^z}{(z-1)^3}$ at its poles.
Intercomposition of the context of the co

Max.: 100 Marks

(10x2=20marks)

(5x8=40marks)

15.Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series

(i) about the point z = 0.

(ii) about the point z = 1. Determine the region of convergence in each case.

16.Evaluate $\int_{C} \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz$ where C is |z| = 2 by using residue theorem.

17. Evaluate by using Cauchy's integral formula $\int_C \frac{z+1}{z^2+2z+4} dz$ where *C* is the circle

|z + 1 + i| = 2

18. State and prove Rouche's theorem.

PART-C

ANSWER ANY TWO QUESTIONS:

19. a) Derive C.R equations in polar coordinates.

b) Prove that any bilinear transformation can be expressed as a product of translation,

rotation, magnification or contraction and inversion. (12+8)

20. a) State and prove Cauchy's integral theorem.

b) Evaluate
$$\int_{C} (\frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)})$$
 where *C* is the circle $|z| = 3.(12+8)$

- 21. a) State and prove Laurent's theorem.
 - b) State and prove fundamental theorem of algebra. (12+8)

22. a) State and prove Argument theorem.

b) Using the method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$

(2 x 20=40marks)