B.Sc.DEGREE EXAMINATION -MATHEMATICS

SIXTH SEMESTER - APRIL 2018
MT 6606- COMPLEX ANALYSIS

Dept. No. \square Max. : 100 Marks

PART-A

ANSWER ALL THE QUESTIONS:
(10x2=20marks)

1. Verify Cauchy-Riemann equations for the function $f(z)=z^{3}$.
2. Show that $u=\log \sqrt{x^{2}+y^{2}}$ is harmonic.
3. Find the points where the mapping $w=e^{z}$ is conformal. Also find the critical points.
4. Define a bilinear transformation.
5. Using Cauchy's Integral formula, evaluate $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+5}{z-3} d z$ where C is $|\mathrm{z}|=4$.
6. Evaluate $\int_{C} \frac{e^{z}}{z^{n}} d z$ where C is the circle $|z|=1$.
7. Find the poles of $f(z)=\frac{z^{2}-2 z+3}{z-2}$
8. Write Maclaurin's series expansion of sinz.
9. Find the residue of $\frac{z e^{z}}{(z-1)^{3}}$ at its poles.
10. State Cauchy's residue theorem.

PART-B

ANSWER ANY FIVE QUESTIONS:
11.Prove that $f(z)=\sin x \cosh y+i \cos x \sinh y$ is differentiable at every point.
12. If $f(z)$ is analytic prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
13. Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ onto $w_{1}=1, w_{2}=i, w_{3}=-1$ respectively.
14. State and prove Liouville's theorem.
15.Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series
(i) about the point $z=0$.
(ii) about the point $z=1$. Determine the region of convergence in each case.
16. Evaluate $\int_{C} \frac{3 z^{2}+z-1}{\left(z^{2}-1\right)(z-3)} d z$ where C is $|z|=2$ by using residue theorem.
17. Evaluate by using Cauchy's integral formula $\int_{C} \frac{z+1}{z^{2}+2 z+4} d z$ where C is the circle $|z+1+i|=2$
18. State and prove Rouche's theorem.

PART-C

ANSWER ANY TWO QUESTIONS:

19. a) Derive C.R equations in polar coordinates.
b) Prove that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
20. a) State and prove Cauchy's integral theorem.
b) Evaluate $\int_{C}\left(\frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)}\right)$ where C is the circle $|z|=3 .(\mathbf{1 2 + 8})$
21. a) State and prove Laurent's theorem.
b) State and prove fundamental theorem of algebra.
22. a) State and prove Argument theorem.
b) Using the method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
