LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
B.Sc.DEGREE EXAMINATION -MATHEMATICS [*** SIXTH SEMESTER - APRIL 2018		[******]
MT 6608- DISCRETE MATHEMATICS		
Date: 21-04-2018 Dept. No. M Time: 09:00-12:00		Max. : 100 Marks
PART-A		
Answer all the questions(10 x 2=20)		
1.	Construct the truth table for $P \land (Q \land P)$.	
2.	What is the dual of $\exists (P \land Q) \lor (P \land \exists (Q \lor \exists S))$.	
3.	Write down the min terms of <i>P</i> , <i>Q</i> and <i>R</i> .	
4.	Obtain the principle disjunctive normal form of $P \lor Q$	
5.	Define semigroup homomorphism.	
б.	Define submonoid.	
7.	Define lattice.	
8.	Define order isomorphic.	
9.	Define direct product of two Boolean algebras.	
10.	Define Boolean function.	
	PART-R	
Answer any FIVE questions		(5 x 8=40)
11.	Construct the truth table for $\neg (P \land Q) \Box (\neg P \lor \neg Q)$.	
12.	Show that $(\exists P \land (\exists Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$.	
13.	Show that $S \lor R$ is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$.	
14.	Show that $\neg \neg (P \land Q)$ follows from $\neg P \land \neg Q$.	
15.	Prove that for any commutative monoid $(M,*)$, the set of all idempotent elements of M forms a submonoid.	
16.	Let (L, \leq) be a lattice in which $*$ and \oplus denote the operations of meet and join respectively.	
	Then prove that for any $a, b \in L$, $a \le b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$.	
17.	Prove that the distributive inequalities hold in a lattice.	

18. Obtain the values of the Boolean forms (a) $x_1 * x_2$ (b) $x_1 * (x'_1 \oplus x_2)$ (c) $x_1 \oplus (x_1 * x_2)$

PART-C Answer any TWO questions $(2 \times 20 = 40)$ 19. (a) Show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \land \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ is a tautology. (b) Prove that if $H_1, H_2, H_3, ..., H_m$ and P imply Q, then $H_1, H_2, H_3, ..., H_m$ imply $P \to Q$. (10+10)(a) Show that the following premises are inconsistent. 20. If Jack misses many classes through illness, then he fails in high school. Ι II If Jack fails high school, then he is uneducated. III If Jack reads a lot of books, then he is not uneducated. IV Jack misses many classes through illness and reads a lot of books. (b) Prove that the composition of semigroup homomorphism is also a semigroup homomorphism. (10+10)(a) State and prove any four properties of lattice. 21. (b) Define Boolean algebra and give an example. (16+4)(a) Write down the following Boolean expressions in an equivalent sum of the 22. product of canonical forms in three variables x_1, x_2 and x_3 (ii) $x_1 \oplus x_2$ (iii) $(x_1 \oplus x_2)' * x_3$. (i) $x_1 * x_2$ (b) Define the following (i) complete lattice (ii) complemented lattice (iii) distributive lattice (iv) bounded lattice. (12+8)
