LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 **M.Sc.** DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER - NOVEMBER 2007 MT 1805 - REAL ANALYSIS

AB 20

Date : 27/10/2007 Time : 1:00 - 4:00

Dept. No.

Max.: 100 Marks

a)(1) If f is a monotonically increasing function and α is a continuous function on [a,b] then prove that $f \in \Re(\alpha)$ on [a,b].

OR

(2) Prove: $f \in \Re(\alpha)$ on [a,b] if and only if given $\epsilon > 0$, there exists a partition P of [a,b] such that U (P, f, α) – L (P, f, α) < \in . (5)

b) (1) Let f: [a.b] $\rightarrow \mathbf{R}$ be a bounded function and α be a monotonically increasing

function on [a,b] then prove that
$$\int_{\underline{a}}^{\underline{b}} f d\alpha \leq \int_{\underline{a}}^{\underline{b}} f d\alpha.$$
 (8)

(2) Suppose $f \in R$ on [a,b]. If there is a differentiable function F on [a,b] such that

$$F'(x) = f(x), x \in [a,b] \text{ then prove that } \int_{a}^{b} f(x)dx = F(b) - F(a).$$
(7)

OR

(3) Let $f \in \Re(\alpha)$ and $g \in \Re(\alpha)$ on [a,b] then prove that fg and $|f| \in \Re(\alpha)$ on [a,b]. (7)

(4) Let $f \in \Re(\alpha)$ on [a,b] and $m \le f \le M$. Suppose that ϕ is continuous on [m,M]. Define h (x) = ϕ (f (x)), $\forall x \in [a,b]$ then prove that $h \in \Re(\alpha)$ on [a,b]. (8)

II.

a) Prove the following results:

(i) If A,B \in L (Rⁿ, R^m) then $||A + B|| \le ||A|| + ||B||$ and

(ii) If
$$A \in L(\mathbb{R}^n, \mathbb{R}^m)$$
 and $B \in L(\mathbb{R}^m, \mathbb{R}^n)$ then $||BA|| \le ||B|| ||A||$.

OR

(2) Suppose that \overline{f} maps a convex open set $E \subseteq \mathbb{R}^n$ into \mathbb{R}^m , \overline{f} is differentiable on E and there exists a constant M such that $||f'|| \le M$, $\forall x \in E$, then prove that

$$\left| \overline{f} (b) - \overline{f} (a) \right| \le M \left| b - a \right|, \forall a, b \in E.$$
 (5)

b) (1) Suppose \overline{f} maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $\overline{f} \in \mathbb{C}'(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$ and $1 \le j \le n$. OR

(2) If X is a complete metric space and if ϕ is a contraction of X into X, then prove that there exists one and only one $x \in X$ such that $\phi(x) = x$. (15)

III.

a)(1) Prove that (X), the set of all continuous, complex valued, bounded functions, defined on X, is a complete metric space with respect to the metric supremum norm. OR

(2) If $\{f_n\}$ is a sequence of continuous functions defined on E and if $f_n \rightarrow f$ uniformly on E, then prove that f is continuous on E. (5)

b)(1) Let α be monotonically increasing function on [a,b]. Let $f_n \in \Re(\alpha)$ on [a,b], n = 1,2,... and let $f_n \rightarrow f$ uniformly on [a, b] then prove that $f \in \Re(\alpha)$ and

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f_{n} d\alpha$$
(7)

(2) Suppose that {f_n} is a sequence of differentiable functions on [a,b]. Suppose that {f_n (x_o)} converges uniformly on [a,b] to some function f and then prove that $f'(x) = \lim_{x \to \infty} f'_n(x), a \le x \le b.$ (8)

OR

(3) State and prove Stone-Weierstrass theorm.

2

(15)

IV.
a) (1)Suppose that the series
$$\sum_{n=0}^{\infty} c_n x^n$$
 converges for $|\mathbf{x}| < \mathbf{R}$, and define $f(\mathbf{x}) = \sum_{n=0}^{\infty} c_n x^n$, $(|\mathbf{x}| < \mathbf{R})$. Then prove that $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-\mathbf{R}+\epsilon, \mathbf{R}-\epsilon]$, no matter which $\epsilon > 0$ is chosen. And prove that the function f is continuous and differentiable in (-R, R) and $f'(x) = \sum_{n=0}^{\infty} nC_n x^{n-1}$, $(|\mathbf{x}| < \mathbf{R})$.
OR
(2) Expand $f(\mathbf{x}) = \mathbf{x}$, $-\pi < \mathbf{x} < \pi$, as a Fourier series with period 2π . (5)
b) (1) Suppose $\sum C_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} c_n x^n (-1 < \mathbf{x} < 1)$. Then prove that
 $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} c_n$. (7)
(2) State and prove Parseval's theorem. (8)
OR
(3) Explain with usual notations: Fourier series, orthogonal and orthonormal system. And
prove the following theorem: Let $\{\phi_n\}$ be orthonormal on $[a,b]$. Let $S_n(x) = \sum_{m=1}^{n} c_m \phi_m(x)$ be the nth partial sum of the Fourier series of f and suppose that
 $t_n(x) = \sum_{m=1}^{n} \gamma_m \phi_m(x)$. Then prove that $\int_a^b |f - S_n|^2 dx \le \int_a^b |f - t_n|^2 dx$ and equality holds if
and only if $\gamma_m = c_m$, $m = 1, 2, ..., n$. (15)
V.
a) (1)Define Chebyshev polynomial and list down its properties. OR

(2) If f has a derivative of order n at a point x_0 , then prove that the Taylor Polynomial

$$P(x) = \sum_{k=0}^{n} \left(\frac{f^{(k)}(x_0)}{k!} \right) (x - x_0)^k \text{ is the unique polynomial such that } \|f - P\| \le \|f - Q\|$$

whatever Q may be in $P^{(n)}$.

b)(1) Given n+1 distinct points x $_0$, x $_1$, ..., x $_n$ and n+1 real numbers f (x $_0$), f (x₁), ..., f (x $_n$) not necessarily distinct, then prove that there exists one and only one polynomial P of degree \leq n such that P (x $_j$) = f (x $_j$) for each j = 0,1,2,...,n. and the polynomial is

given by the formula P(x)=
$$\sum_{k=0}^{n} \frac{f(x_k)A_k(x)}{A_k(x_k)} \text{ where } A_k(x) = \prod_{\substack{j=0\\i\neq k}}^{n} (x-x_j).$$
(7)

(2) Let $P_{n+1}(x) = x^{n+1} Q(x)$ where Q is a polynomial of degree $\le n$ and let $\left\|P_{n+1}\right\| =$ maximum of $\left\|P_{n+1}(x)\right\|$, $a \le x \le b$. Then prove that we get the inequality

$$\left\|P_{n+1}\right\| \ge \frac{\left(\frac{b-a}{2}\right)^{n+1}}{2^n} \text{ with equality holding if and only if}$$

$$P_{n+1} = \frac{\left(b-a\right)^{n+1}}{2^{2n+1}} T_{n+1}\left(\frac{2x-a-b}{b-a}\right). \tag{8}$$
OR

(3) Assume that the derivative $f^{(n+1)}$ exists on [a,b] and let T be the polynomial of degree $\leq n$ that best approximates f on [a,b] relative to the maximum norm. Then prove that there are (n+1) distinct points x₀, x₁, ..., x_n in the open interval (a,b) such that for each x in [a,b] we get $f(x) - T(x) = \frac{A(x)}{(n+1)!} f^{(n+1)}(c)$ where A (x) = (x - x₀) (x -

$$x_1)...(x - x_n) \text{ and } \min \{ x_0, x_1, ..., x_n, x \} < C < \max \{ x_0, x_1, ..., x_n, x \}.$$
(15)

(5)