LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2007
MT 1805 - REAL ANALYSIS
a)(1) If f is a monotonically increasing function and α is a continuous function on [a,b] then prove that $\mathrm{f} \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.

OR
(2) Prove: $f \in \mathfrak{R}(\alpha)$ on $[a, b]$ if and only if given $\in>0$, there exists a partition P of $[a, b]$ such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
b) (1) Let $\mathrm{f}:[\mathrm{a} . \mathrm{b}] \rightarrow \mathbf{R}$ be a bounded function and α be a monotonically increasing function on $[\mathrm{a}, \mathrm{b}]$ then prove that $\int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{b} f d \alpha$.
(2) Suppose $f \in R$ on $[a, b]$. If there is a differentiable function F on $[a, b]$ such that
$\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}), \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ then prove that $\int_{a}^{b} f(x) d x=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$.
OR
(3) Let $\mathrm{f} \in \mathfrak{R}(\alpha)$ and $\mathrm{g} \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ then prove that fg and $|\mathrm{f}| \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.
(4) Let $\mathrm{f} \in \mathfrak{R}(\alpha)$ on $[a, b]$ and $\mathrm{m} \leq \mathrm{f} \leq \mathrm{M}$. Suppose that ϕ is continuous on [m, M]. Define $\mathrm{h}(\mathrm{x})=\phi(\mathrm{f}(\mathrm{x})), \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ then prove that $\mathrm{h} \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$. . (8)
II.
a) Prove the following results:
(i) If $\mathrm{A}, \mathrm{B} \in \mathrm{L}\left(\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{\mathrm{m}}\right)$ then $\|A+B\| \leq\|A\|+\|B\|$ and
(ii) If $\mathrm{A} \in \mathrm{L}\left(\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{\mathrm{m}}\right)$ and $\mathrm{B} \in \mathrm{L}\left(\mathrm{R}^{\mathrm{m}}, \mathrm{R}^{\mathrm{n}}\right)$ then $\|B A\| \leq\|B\|\|A\|$.
(2) Suppose that \bar{f} maps a convex open set $\mathrm{E} \subseteq \mathrm{R}^{\mathrm{n}}$ into $\mathrm{R}^{\mathrm{m}}, \bar{f}$ is differentiable on E and there exists a constant M such that $\left\|f^{\prime}\right\| \leq \mathrm{M}, \forall \mathrm{x} \in \mathrm{E}$, then prove that

$$
\begin{equation*}
|\bar{f}(\mathrm{~b})-\bar{f}(\mathrm{a})| \leq \mathrm{M}|\mathrm{~b}-\mathrm{a}|, \forall \mathrm{a}, \mathrm{~b} \in \mathrm{E} . \tag{5}
\end{equation*}
$$

b) (1) Suppose \bar{f} maps an open set $\mathrm{E} \subset \mathrm{R}^{\mathrm{n}}$ into R^{m}. Then prove that $\bar{f} \in \mathbf{C}^{\prime}(\mathrm{E})$ if and only if the partial derivatives $\mathrm{D}_{\mathrm{j}} \mathrm{f}_{\mathrm{i}}$ exist and are continuous on E for $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. OR
(2) If X is a complete metric space and if ϕ is a contraction of X into X , then prove that there exists one and only one $\mathrm{x} \in \mathrm{X}$ such that $\phi(\mathrm{x})=\mathrm{x}$.
III.
a)(1) Prove that (X), the set of all continuous, complex valued, bounded functions, defined on X, is a complete metric space with respect to the metric supremum norm. OR
(2) If $\left\{f_{n}\right\}$ is a sequence of continuous functions defined on E and if $f_{n} \rightarrow f$ uniformly on E, then prove that f is continuous on E.
b)(1) Let α be monotonically increasing function on $[a, b]$. Let $f_{n} \in \mathfrak{R}(\alpha)$ on $[a, b]$, $\mathrm{n}=1,2, \ldots$ and let $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on $[\mathrm{a}, \mathrm{b}]$ then prove that $\mathrm{f} \in \mathfrak{R}(\alpha)$ and
$\int_{a}^{b} f d \alpha=\int_{a}^{b} f_{n} d \alpha$
(2) Suppose that $\left\{f_{n}\right\}$ is a sequence of differentiable functions on [a,b]. Suppose that $\left\{\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{o}}\right)\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to some function f and then prove that $f^{\prime}(x)=\lim _{x \rightarrow \infty} f_{n}^{\prime}(x), a \leq x \leq b$.

OR
(3) State and prove Stone-Weierstrass theorm.
IV.
a) (1)Suppose that the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $|\mathrm{x}|<\mathrm{R}$, and $\operatorname{define} \mathrm{f}(\mathrm{x})=$ $\sum_{n=0}^{\infty} c_{n} x^{n},(|\mathrm{x}|<\mathrm{R})$. Then prove that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges uniformly on $[-\mathrm{R}+\in, \mathrm{R}-\in]$, no matter which $\in>0$ is chosen. And prove that the function f is continuous and differentiable in $(-\mathrm{R}, \mathrm{R})$ and $f^{\prime}(x)=\sum_{n=0}^{\infty} n C_{n} x^{n-1},(|\mathrm{x}|<\mathrm{R})$.

OR
(2) Expand $f(x)=x,-\pi<x<\pi$, as a Fourier series with period 2π.
b) (1) Suppose $\sum C_{n}$ converges. Put $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}(-1<x<1)$. Then prove that $\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} c_{n}$.
(2) State and prove Parseval's theorem.

OR
(3) Explain with usual notations: Fourier series, orthogonal and orthonormal system. And prove the following theorem: Let $\left\{\phi_{\mathrm{n}}\right\}$ be orthonormal on $[\mathrm{a}, \mathrm{b}]$. Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=$ $\sum_{m=1}^{n} c_{m} \phi_{m}(x)$ be the $\mathrm{n}^{\text {th }}$ partial sum of the Fourier series of f and suppose that $\mathrm{t}_{\mathrm{n}}(\mathrm{x})=\sum_{m=1}^{n} \gamma_{m} \phi_{m}(x)$. Then prove that $\int_{a}^{b}\left|f-S_{n}\right|^{2} d x \leq \int_{a}^{b}\left|f-t_{n}\right|^{2} d x$ and equality holds if and only if $\gamma_{\mathrm{m}}=\mathrm{c}_{\mathrm{m}}, \mathrm{m}=1,2, \ldots, \mathrm{n}$.
V.
a) (1)Define Chebyshev polynomial and list down its properties.

OR
(2) If f has a derivative of order n at a point x_{0}, then prove that the Taylor Polynomial $P(x)=\sum_{k=0}^{n}\left(\frac{f^{(k)\left(x_{0}\right)}}{k!}\right)\left(x-x_{0}\right)^{k}$ is the unique polynomial such that $\|f-P\| \leq\|f-Q\|$
whatever Q may be in $\mathrm{P}^{(\mathrm{n})}$.
b)(1) Given $\mathrm{n}+1$ distinct points $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and $\mathrm{n}+1$ real numbers $\mathrm{f}\left(\mathrm{x}_{0}\right), \mathrm{f}\left(\mathrm{x}_{1}\right), \ldots$, $f\left(x_{n}\right)$ not necessarily distinct, then prove that there exists one and only one polynomial P of degree $\leq n$ such that $P\left(x_{j}\right)=f\left(x_{j}\right)$ for each $j=0,1,2, \ldots, n$. and the polynomial is given by the formula $\mathrm{P}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{f\left(x_{k}\right) A_{k}(x)}{A_{k}\left(x_{k}\right)}$ where $A_{k}(x)=\prod_{\substack{j=0 \\ i \neq k}}^{n}\left(x-x_{j}\right)$.
(2) Let $\mathrm{P}_{\mathrm{n}+1}(\mathrm{x})=\mathrm{x}{ }^{\mathrm{n}+1} \mathrm{Q}(\mathrm{x})$ where Q is a polynomial of degree $\leq \mathrm{n}$ and let $\left\|P_{n+1}\right\|=$ maximum of $\left|\mathrm{P}_{\mathrm{n}+1}(\mathrm{x})\right|, \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. Then prove that we get the inequality $\left\|P_{n+1}\right\| \geq \frac{\left(\frac{b-a}{2}\right)^{n+1}}{2^{n}}$ with equality holding if and only if
$P_{n+1}={\frac{(b-a)}{2^{2 n+1}}}^{n+1} T_{n+1}\left(\frac{2 x-a-b}{b-a}\right)$.
OR
(3) Assume that the derivative $f^{(n+1)}$ exists on [a,b] and let T be the polynomial of degree $\leq \mathrm{n}$ that best approximates f on $[\mathrm{a}, \mathrm{b}]$ relative to the maximum norm. Then prove that there are $(\mathrm{n}+1)$ distinct points $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ in the open interval (a, b) such that for each x in [a,b] we get $f(x)-T(x)=\frac{A(x)}{(n+1)!} f^{(n+1)}(c)$ where $\mathrm{A}(\mathrm{x})=\left(\mathrm{x}-\mathrm{x}_{0}\right)(\mathrm{x}-$
$\left.\mathrm{x}_{1}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\right)$ and $\min \left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n},} \mathrm{x}\right\}<\mathrm{C}<\max \left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right\}$.

