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a)(1) If f is a monotonically increasing function and α is a continuous function on [a,b] 

then prove that f∈ℜ(α) on [a,b].        

OR 

   (2) Prove: f ∈ℜ(α) on [a,b] if and only if given ∈> 0, there exists a partition P of [a,b] 

such that U (P, f, α) – L (P, f, α) < ∈.             (5) 

 

b) (1) Let f: [a.b]→R be a bounded  function and α be a monotonically increasing 

function on [a,b] then prove that 
bb

fd fd

a a

α α≤∫ ∫ .                     (8) 

      (2) Suppose f∈R on [a,b]. If there is a differentiable function F on [a,b] such that 

F’(x) =f (x), x ∈ [a,b] then prove that ( )
b

f x dx

a
∫ = F(b) – F(a).                  (7) 

OR 

(3) Let f ∈ ℜ(α) and g∈ℜ(α) on [a,b] then prove that fg and f∈ℜ(α) on [a,b].     (7) 

(4) Let f ∈ ℜ(α) on [a,b] and m ≤ f ≤ M. Suppose that φ is continuous on [m,M]. Define   

h (x) = φ (f (x)), ∀x ∈ [a,b] then prove that h ∈ℜ(α) on [a,b]. (8) 

II. 

a) Prove the following results: 

(i) If A,B ∈ L (R n, R m ) then A B A B+ ≤ +  and  

      (ii) If A ∈ L (R n, R m ) and B ∈ L (R m, R n )  then BA B A≤ .  

 

OR 
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(2) Suppose that f  maps a convex open set E ⊆ Rn into Rm, f  is differentiable on E and 

there exists a constant M such that f ′ ≤  M, ∀ x ∈ E, then prove that  

 f  (b) - f  (a) ≤ M  b - a , ∀ a, b ∈ E.          (5) 

 

b) (1) Suppose f  maps an open set E ⊂ Rn into Rm. Then prove that f  ∈ C′(E) if and 

only if the partial derivatives Djf i exist and are continuous on E for 1≤ i ≤ m and 1≤ j ≤ n.  

 OR 

(2) If X is a complete metric space and if φ is a contraction of X into X, then prove that 

there exists one and only one x ∈X such that φ (x) = x.    (15) 

 

III. 

a)(1) Prove that     (X), the set of all continuous, complex valued, bounded functions, 

defined on X, is a complete metric space with respect to the metric supremum norm.  

OR 

(2) If {f n} is a sequence of continuous functions defined on E and if f n →f uniformly on 

E, then prove that f is continuous on E.             (5) 

 

b)(1) Let  α be monotonically increasing function on [a,b]. Let fn ∈ℜ (α) on [a,b],            

n = 1,2,.. . and let f n →f uniformly on [a, b] then prove that f ∈ℜ (α)   and 

b b
f d f d

n
a a

α α=∫ ∫                  (7) 

(2) Suppose that {fn} is a sequence of differentiable functions on [a,b]. Suppose that      

{f n (xo)} converges uniformly on [a,b] to some function f and  then prove that 

( ) lim ( ), .n
x

f x f x a x b
→∞

′ ′= ≤ ≤               (8) 

OR 

(3) State and prove Stone-Weierstrass theorm.        (15) 
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IV. 

a) (1)Suppose that the series 
0

nc x
n

n

∞

=
∑  converges for x< R, and define f (x) = 

0

nc x
n

n

∞

=
∑ , (x< R). Then prove that 

0

nc x
n

n

∞

=
∑ converges uniformly on [-R+∈, R-∈], 

no matter which ∈>0 is chosen. And prove that the function f is continuous and 

differentiable in (-R,R) and 1( )
0

nf x nC x
n

n

∞
−′ =

=
∑ , (x< R).    

OR 

(2) Expand f(x) = x, -π < x < π, as a Fourier series with period 2π.         (5) 

b) (1) Suppose C
n∑ converges. Put ( )

0

nf x c x
n

n

∞
=

=
∑ (-1< x <1). Then prove that  

1
lim ( )

0
x

f x c
n

n
→

∞
=

=
∑ .              (7) 

(2) State and prove Parseval’s theorem.           (8) 

OR 

(3) Explain with usual notations: Fourier series, orthogonal and orthonormal system. And 

prove the following theorem: Let {φn} be orthonormal on [a,b]. Let S n (x) = 

( )
1

n
c x
m m

m
φ

=
∑  be the nth partial sum of the Fourier series of f and suppose that               

tn (x) = ( )
1

n
x

m m
m

γ φ
=
∑ . Then prove that 

2 2b b
f S dx f t dx

n n
a a

− ≤ −∫ ∫  and equality holds if 

and only if γm =  c m , m = 1,2, …,n.         (15) 

 

V.  

a) (1)Define Chebyshev polynomial and list down its properties.    

OR 
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(2) If f has a derivative of order n at a point x0, then prove that the Taylor Polynomial 

( )( )
0

( ) ( )
0!

0

k xn f kP x x x
k

k

 
 = − 
 =  

∑ is the unique polynomial such that f P f Q− ≤ −  

whatever Q may be in P ( n ).             (5) 

b)(1) Given n+1 distinct points x 0,x 1, …, x n and n+1 real numbers f (x0),  f (x1),  …,       

f (x n) not necessarily distinct, then prove that there exists one and only one polynomial P 

of degree ≤ n such that P (x j ) = f (x j ) for each j = 0,1,2,…,n.  and the polynomial is 

given by the formula 
n ( ) ( )

P(x)= 
( )

k=0

f x A x
k k

A x
k k

∑  where ( ) ( )
0

n
A x x x

k jj
i k

= −
=
≠

∏ .       (7) 

(2) Let P n+1 (x)= x n+1 Q(x) where Q is a polynomial of degree ≤ n and let 

1
P
n

=+ maximum of P n+1 (x), a ≤ x ≤ b.  Then prove that we get the inequality 

1

2
1 2

nb a

P
n n

+− 
 
 ≥+  with equality holding if and only if 

( ) 1
2

1 12 12

nb a x a b
P T
n nn b a

+− − − =  + ++ − 
.          (8) 

OR 

(3) Assume that the derivative f ( n + 1) exists on [a,b] and let T be the polynomial of 

degree ≤ n that best approximates f on [a,b] relative to the maximum norm. Then prove 

that there are (n+1) distinct points x 0, x 1, …, x n in the open interval (a,b) such that for 

each x in [a,b]  we get 
( ) ( 1)( ) ( ) ( )

( 1)!

A x nf x T x f c
n

+− =
+

 where A (x) = (x - x0) (x - 

x1)…(x – x n) and min { x 0, x 1, …, x n, x} < C < max { x 0, x 1, …, x n, x}.   (15) 

 

* * * * * * *  


