LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2016

MT 5509 - ALGEBRAIC STRUCTURE - II

Date: 05-11-2016 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

PART - A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20)$

- 1. If S is a subset of a vector space V and F, then show that S is a subspace of V if and only if L(S) = S.
- 2. Give an example to show that the union of two subspaces of a vector space V need not to be a subspace of V.
- 3. Define Nullity and Rank of a homomorphism *T*.
- 4. Define Kernel and Image of a homomorphism *T*.
- 5. State Schwarz and Triangular inequalities.
- 6. Define an Algebra over a field *F*.
- 7. Define skew symmetric matrix and give an example.
- 8. If A and B are Hermitian, show that AB BA is skew Hermitian.
- 9. If $T \in A(V)$ is a Hermitian, then prove that all its eigen values are real.
- 10. Define rank of a matrix.

PART - B

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

- 11. Show that a non-empty subset W of a vector space V over F is a subset of V if and only if $aw_1+bw_2 \in W$ for all $a, b \in F$ and $w_1, w_2 \in W$.
- 12. If S and T are subsets of a vector space V over F, then show that $L(S \cup T) = L(S) + L(T)$.
- 13. If V is a vector space of finite dimension and W is a subspace of V, then prove that dimV/W = dimV dimW.
- 14. Let $T: U \to V$ be a homomorphism of two vector spaces over F. Prove that the $Ker\ T$ is a subspace of U.
- 15. Prove that the product of two invertible linear transformations on V is itself an invertible linear transformation on V.

16. If
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$. Calculate $(A - B)^2$.

17. If
$$A = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$. Calculate $(A + B)^t$.

18. Prove that all the eigen values of a unitary transformation have absolute value 1.

PART - C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

- 19. (i) Prove that a non-empty subset *W* of a vector space *V* over *F* is a subspace of *V* if and only if *W* is closed under addition and scalar multiplication.
 - (ii) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$.
- 20. State and prove the fundamental homomorphism theorem for vector spaces.
- 21. Prove that every finite dimensional inner product space V has an orthonormal set as a basis.
- 22. (i) Show that a matrix A of order n over a field F is non singular if and only if it has rank n.

$$x_1 + 2x_2 + 2x_3 = 5$$

(ii) Solve the system of linear equations $x_1 - 3x_2 + 2x_3 = -5$

$$2x_1 - x_2 + x_3 = -3$$
 over the field of rational numbers.
