LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

THIRDSEMESTER - NOVEMBER 2017

16PMT3MC04- ALGORITHMIC GRAPH THEORY

\square

I a) With usual notations show that $\delta \leq \frac{2 \epsilon}{v} \leq \Delta$.
[OR]
b) Write Fleury's Algorithm
c) i) State and prove Chvatal theorem for Hamiltonian graphs.
ii) Show that a connected graph is a tree if and only if every edge is a cut edge.(10+5) [OR]
d)i) Prove that a graph is bipartite if and only if it has no odd cycle.
ii)Write Kruskal Algorithm. Apply the same to find MST
for the following graph.

II a) State and prove Euler's formula for planar graphs.
[OR]
b) Show that the sequences $(7,6,5,4,3,3,2)$ and $(6,6,5,4,3,3,1)$ are not graphic.
c) Write Dijkstra's algorithm. Find shortest path from u_{0} to all other vertices using Dijkstra's algorithm for the following graph.

[OR]
d) Prove that a graph is planar if and only if it has no subdivision of K_{5} or $K_{3,3}$

IIIa) Show that C_{5} is not a comparability graph.
[OR]
b) Define interval graphs and give an example.
c)State Depth-First search algorithm and simulate it on the following graph by selecting the vertex g.

[OR]
d) i) State and prove Berg's theorem for maximum matching.
ii) If G is a k regular bipartite graph with $k>0$, then prove that G has a perfect matching.
(10+5)

IVa) Give two families of tree split graphs .
[OR]
b) If G is a split graph then prove that \bar{G} is a split graph.
c)i) State and prove Hammer and Simeone theorem for split graphs.
ii) Write the characterization theorem for split graphs

[OR]

d) i)Write the characterization theorem for permutation graphs.
ii)Show that the complement of a permutation graph is also a permutation graph.

Va) Define circular arc graph and give an example .
[OR]
b) Construct permutation graph for the permutation $\pi=(4,3,6,1,5,2)$.
c) i) State and prove Gill and Acharya theorem for permutation graphs.
ii)Write any two applications of a permutation graphs.
[OR]
d) i) State and prove Gilmore and Hoffman theorem for interval graphs.
ii)Show that every interval graph is a circular arc graph. Give an example to show that the converse is not true.

