LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - NOVEMBER 2017
6UMT3MC02- VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS
\square

PART - A
Answer ALL Questions:
$10 \times 2=20$

1. If $\emptyset(x, y, z)=x^{2}+3 y^{2}+2 z^{2}$ find $\nabla \emptyset$ at the point $(2,0,1)$.
2. If $\vec{F}=x z^{3} \vec{\imath}-2 x y z \vec{\jmath}+x z \vec{k}$, findcurl \vec{F} at $(1,2,0)$.
3. Show that the vector field f, where $f=\left(y+y^{2}+z^{2}\right) \vec{\imath}+(x+z+2 x y) \vec{\jmath}+(y+2 z x) \vec{k}$, is conservative.
4. If $\vec{F}=3 x y \vec{\imath}-y^{2} \vec{\jmath}$, evaluate $\int_{C} \vec{F} \vec{d} \vec{r}$, where C is the curve on the $x y$ plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
5. State Green's theorem in plane.
6. Find the maximum value of the directional derivative of $\varnothing=2 x^{2}+3 y^{2}+5 z^{2}$ at $(1,1,-4)$.
7. Solve: $\frac{d y}{d x}+\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}=0$.
8. Solve: $y=2 p x+y^{2} p^{3}$.
9. Solve: $\left(D^{2}-D-2\right) y=0$.
10. Find the particular integral of $\left(D^{2}-6 D+9\right) y=e^{3 x}$.

PART - B

Answer ANY FIVE Questions:

$$
5 \times 8=40
$$

11. Prove that for any vector $\vec{A}, \nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \cdot \vec{A}$
12. Find the directional derivative of $x y z-x y^{2} z^{3}$ at the point $(1,2,-1)$, in the direction of the vector $\hat{\imath}-\hat{\jmath}-3 \widehat{k}$.
13. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=z \vec{\imath}+x \vec{\jmath}-3 y^{2} z \vec{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
14. Find the value of the integral $\int_{C} A \cdot \overrightarrow{d r}$, where $A=y z \vec{\imath}+z x \vec{\jmath}-x y \vec{k}$ if C is the curve whose parametric equations are $x=t, y=t^{2}, z=t^{3}$ drawn from $O(0,0,0)$ to $Q(2,4,8)$.
15. Find by Green's theorem the value of $\int_{C}\left(x^{2} y d x+y d y\right)$ along the closed curve C formed by $y^{2}=x$ and $y=x$ between $(0,0)$ and $(1,1)$.
16. Solve: $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.
17. Solve: $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$.
18. Solve: $\left(D^{2}+3 D+2\right) y=e^{2 x}+x^{2}$.

PART - C

Answer ANY TWO Questions:
19. a)If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $|\vec{r}|=r$, prove that (i) $\nabla r=\frac{\vec{r}}{r} \quad$ (ii) $\nabla(\log r)=\frac{\vec{r}}{r^{2}}$
b) Evaluate $\iiint_{V} \nabla \cdot \vec{F} d V$ if $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k}$ and if V is the volume of the region enclosed by the cube $0 \leq x, y, z \leq 1$.
20. Verify Gauss's theorem for $\vec{A}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ taken over the region bounded by the planes $x=0, x=a, y=0, y=a, z=0, z=a$.
21. a) Solve: $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$.
b) Solve: $p^{2}+2 y p \cot x-y^{2}=0$.
22. a) Solve: $\left(D^{2}+1\right) y=x^{2} \cos x$.
b) Solve: $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$, using variation of parameters.

