LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - NOVEMBER 2017
17PMT1MC02- REAL ANALYSIS

Date: 04-11-2017
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all Questions. All questions carry equal marks.

1. (a) Suppose f is a continuous mapping of a metric space X into a metric space and E is a connected subset of X. Then prove that $f(E)$ is connected.
(OR)
(b) State and prove generalized mean value theorem.
(5 marks)
(c) (i) Suppose f is continuous on $[a, b], f^{\prime}(x)$ exists at some point $. x \in[a, b], \mathrm{g}$ is defined on an interval I which contains the range of f and g is differentiable at the point $\mathrm{f}(\mathrm{x})$. If
$h(t)=g(f(t)), a \leq t \leq b$, then prove that h is differentiable at x and $h^{\prime}(x)=\quad g^{\prime}(f(x)) f^{\prime}(x)$. (9 marks)
(ii) If f is a real valued function defined on $[a, b]$, f has local maximum at a point $x \in[a, b]$ and $f^{\prime}(x)$ exists, then prove that $f^{\prime}(x)=0$. (6 marks)
(OR)
(d) (i) Suppose f is a real differentiable function on [a,b] and suppose $f^{\prime}(a)<\lambda<\quad f^{\prime}(b)$. Prove that there is a point $\mathrm{x} \in(a, b)$ such that $f^{\prime}(x)=\lambda . \quad$ (8 marks)
(ii) Suppose f is a continuous mapping of $[0,1]$ into itself. Prove that $\mathrm{f}(\mathrm{x})=\mathrm{x}$ for atleast one $x \in[0,1]$.
(7 marks)
2. (a) For $f(x)=2 x^{2}+1, \alpha(t)=t+[3 t]$ and P be the partition of $[0,1]$ consisting of four subintervals of equal length find $U(P, f, \alpha)$ and $L(P, f, \alpha)$.
(OR)
(b) If $f \in \mathfrak{R}(\alpha)$ and $g \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, then prove that $|f| \in \mathfrak{R}(\alpha)$ and $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$.
(5 marks)
(c) (i) State and prove the fundamental theorem of calculus
(ii) State and prove a necessary and sufficient condition for a bounded real valued function to be a Riemann-Steiltjes integrable.
(10 marks)

(OR)

(d) (i) State and prove the theorem on Integration by parts.
(ii) If f is a real continuously differentiable function on $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=0$ and $\int_{a}^{b} f^{2}(x) d x=1$, then prove that $\int_{a}^{b} x f(x) f^{\prime}(x) d x=-\frac{1}{2} \quad \quad(5+10$ marks $)$
3. (a)Prove that for $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, 0 \leq x \leq 1, n=1,2 \ldots$,
$\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x \neq \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.
(b)State and prove the Cauchy criterion for uniform convergence of sequence of functions (5 marks)
(c) If $\left\{f_{n}\right\}$ is a sequence of continuous functions on a set E and if $f_{n} \rightarrow f$ uniformly on E , then prove that f is continuous on E .
(15marks)
(OR)
(d)State and prove the Stone-Weierstrass theorem.
4. (a) Let $=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$ be orthnormal on I and assume that $f \in L^{2}(I)$. Define two sequences of functions $\left\{s_{n}\right\} \quad$ and $\left\{t_{n}\right\}$ on I as follows: $s_{n}(x)=\sum_{k=0}^{\infty} c_{k} \varphi_{k}(x), \quad t_{n}(x)=$ $\sum_{k=0}^{\infty} b_{k} \varphi_{k}(x)$ where $c_{k}=\left(f, \varphi_{k}(x)\right.$ for $\mathrm{k}=0,1,2 \ldots$ and $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \ldots$ are arbitrary complex numbers. Then for each n , prove that $\left\|f-s_{n}\right\| \leq\left\|f-t_{n}\right\|$.
(OR)
(b)State and prove the Riesz-Fischer theorem. (5 marks)
(c) State and prove the Riemann-Lebesgue lemma and use the lemma to prove the following: For $f \in L(-\infty,+\infty), \lim _{\alpha \rightarrow \infty} \int_{-\infty}^{\infty} f(t) \frac{1-\cos \alpha t}{t} d t=\int_{0}^{\infty} \frac{f(t)-f(-t)}{t} d t . \quad$ (15 marks)

(OR)

(d) (i) If g is of bounded variation on $[0, \delta]$, then prove thatl $\operatorname{im}_{\alpha \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta} g(t) \frac{\sin \alpha t}{t} d t=g(0+)$.
(ii) Suppose that $g(0+)$ exists and for some $\delta>0$, the Lebesgue integral $\int_{0}^{\delta} \frac{g(t)-g(0+)}{t} d t$ exists. Prove that $\lim _{\alpha \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta} g(t) \frac{\sin \alpha t}{t} d t=g(0+) . \quad(9+6$ marks $)$
5. (a) If Ω is the set of all invertible linear operators on R^{n} and for $A \in \Omega, B \in L\left(R^{n}\right)$, if $\|B-A\|\left\|A^{-1}\right\|<1$, then prove that $B \in \Omega$.
(OR)
(b) State and prove the fixed point theorem.
(5 marks)
(c) State and prove the inverse function theorem.
(OR)
(d) State and prove the implicit function theorem.

