M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2017
17/16PMT1MC01 - LINEAR ALGEBRA

Date: 02-11-2017
Dept. No. \square
Max. : 100 Marks
Time: 01:00-04:00

Answer ALL the questions.

I. a) i) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent.

1. c is a characteristic value of T.
2. The operator ($T-c I$) is singular.
3. $\operatorname{det}(T-c I)=0$.
(OR)
ii) Let $A=\left(\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right)$ be the matrix of a linear operator T defined on R^{3} with respect to the standard ordered basis. Prove that A is diagonalizable.
b) i) Let T be a linear operator on a finite dimensional vector space V. Prove that the minimal polynomial for T divides the characteristic polynomial for T.
(OR)
ii) Let V be a finite dimensional vector space over F and T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
II. a) i) Let T be a linear operator on an n -dimensional vector space V . Let A be an nx n matrix. Then prove that characteristic and minimal polynomials for T have the same roots, except for multiplicities.
(OR)
ii) Let W be an invariant subspace for T. Then prove that the minimal polynomial for T_{w} divides the minimal polynomial for T.
b) i) State and prove Primary Decomposition theorem.
(OR)
ii) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if c_{1}, \ldots, c_{k} are the distinct characteristic values of T, then prove that there exist linear operators E_{1}, \ldots, E_{k} on V such that
(i) $T=c_{1} E_{1}+\ldots+c_{k} E_{k}$.
(ii) $I=E_{1}+\ldots+E_{k}$.
(iii) $E_{i} E_{j}=0, i \neq j$.
(iv) Each E_{i} is a projection.
(v) The range of E_{i} is the characteristic space for T associated with c_{i}.
III. a) i) Let T be a linear operator on a vector space V and W a proper T-admissible subspace of V. Prove that W and cyclic subspace $\mathrm{Z}(\alpha ; \mathrm{T})$ are independent.
(OR)
ii) If \boldsymbol{B} is an ordered basis for $\mathrm{W}_{\mathrm{i}} 1 \leq \mathrm{i} \leq \mathrm{k}$, then prove that the sequences $\boldsymbol{B}=\left(\boldsymbol{B}_{1} \ldots, \mathscr{B}_{\boldsymbol{k}}\right)$ is an ordered basis of W.
b) i) Let T be a linear operator on a finite-dimensional vector space V and let W_{0} be a proper T -admissible subspace of V . There show that exist non-zero vectors $\alpha_{1}, \ldots, \alpha_{r}$ in V with respective T-annihilators p_{1}, \ldots, p_{r} are such that
(i) $\quad V=W_{0} \oplus Z\left(\alpha_{1} ; T\right) \oplus \ldots \oplus Z\left(\alpha_{r} ; T\right)$;
(ii) $\quad p_{k}$ divides $p_{k}-1, k=2, \ldots, r$.
(OR)
ii) Let T be a linear operator on a finite-dimensional vector space V . Let p and f be the minimal and characteristic polynomials for T , respectively. Then prove that
(i) p divides f.
(ii) p and f have the same prime factors, except for multiplicities.
(iii) If $p=f_{1}^{r_{1}} \ldots f_{k}^{r_{k}}$ is the prime factorization of p , then $f=f_{1}^{d_{1}} \ldots f_{k}^{d_{k}}$. where d_{i} is the nullity of $\mathrm{f}_{\mathrm{i}}(\mathrm{T})^{\text {ri }}$ divided by the degree of f_{i}.
IV. a) i) For any linear operator T on a finite dimensional inner product space V then prove that there exists a unique linear operator T^{*} on V such that $(T \alpha / \beta)=\left(\alpha / T^{*} \beta\right)$ for all α, β in V.
(OR)
ii) Define the Quadratic form q associated with a symmetric bilinear form f and prove that

$$
\begin{equation*}
f(\alpha, \beta)=\frac{1}{4} q(\alpha+\beta)-\frac{1}{4} q(\alpha-\beta) \tag{8}
\end{equation*}
$$

b) i) Let f be a non-degenerate bilinear form on a finite dimensional vector space V. Prove that the set of all linear operators on V which preserve is a group under the operation composition.
ii) State and prove Principal Axis Theorem.

(OR)

i) Let V be a complex vector space and f be a bilinear form on V such that $\mathrm{f}(\alpha, \alpha)$ is real for every α. Then prove that f is Hermitian.
ii) Let f be a form on a fdrs V and let A be a matrix of f in an ordered basis \mathscr{B}. Prove f is a positive form iff $\mathrm{A}=\mathrm{A}^{*}$ and all the principal minors of A are all positive.
V. a. i) Define: Bilinear forms, Bilinear function, Skew Symmetric Bilinear form, Positive forms.
(OR)
ii) Let F be the field of real numbers or the field of complex numbers. Let A be an nxn matrix over F. Show that the function g defined by $g(X, Y)=Y^{*} A X$ is a positive form on the space $F^{n \times 1}$ if and only if there exists an invertible nxn matrix P with entries in F such that $\mathrm{A}=\mathrm{P}^{*} \mathrm{P}$.
b) i) Let V be a finite dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear form on V which has rank r. Then prove that there is an ordered basis $\mathscr{B}=\left\{\beta_{1}, \beta_{2}, \ldots \beta_{n}\right\}$ for V such that the matrix of f in the ordered basis \mathscr{B} is diagonal and $f\left(\beta_{i}, \beta_{j}\right)=\left\{\begin{array}{ll}1, & \mathrm{j}=1,2, . . \mathrm{r} \\ 0, & \mathrm{j}>\mathrm{r}\end{array}\right\}$.

> (OR)
ii) If f is a non-zero skew-symmetric bilinear form on a finite dimensional vector space V then prove that there exist a finite sequence of pairs of vectors, $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots\left(\alpha_{k}, \beta_{k}\right)$ with the following properties:

1) $f\left(\alpha_{j}, \beta_{j}\right)=1, \mathrm{j}=1,2,, \ldots, \mathrm{k}$.
2) $f\left(\alpha_{i}, \alpha_{j}\right)=f\left(\beta_{i}, \beta_{j}\right)=f\left(\alpha_{i}, \beta_{j}\right)=0, \mathrm{i} \neq \mathrm{j}$.
3) If W_{j} is the two dimensional subspace spanned by α_{j} and β_{j}, then
$\mathrm{V}=W_{1} \oplus W_{2} \oplus \ldots W_{k} \oplus W_{0}$ where W_{0} is orthogonal to all α_{j} and β_{j} and the restriction of f to W_{0} is the zero form.
