LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIRST SEMESTER - NOVEMBER 2017
17/16UMT1MCO2- ANALYTICAL GEOMETRY OF 2D, TRIG. MATRICES

Date: 08-11-2017
Dept. No. \square Max. : 100 Marks Time: 01:00-04:00

PART - A

Answer ALL questions(10 X $2=20$)

1. Write the expansion for $\sin n \theta$.
2. If $x=\cos \theta+i \sin \theta$ find $x^{n}+\frac{1}{x^{n}}$.
3. Show that $\sin (i x)=i \sinh x$ and $\cos (i x)=\cosh x$.
4. Find the value of $\log (4+3 i)$.
5. State Cayley Hamilton theorem.
6. Find the eigen values of the matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
7. Find the pole of the line $A x+B y+C=0$ with respect to the parabola $y^{2}=4 a x$.
8. Define the conjugate diameters of the ellipse.
9. Write the equation to theasymptotes of thehyperbolaax ${ }^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$.
10. Find the eccentricity of the conic $\frac{12}{r}=4+\sqrt{3} \cos \theta+3 \sin \theta$.

PART - B
 Answer any FIVE questions(5 X8 = 40)

11. Expand $\cos 6 \theta$ in terms of $\sin \theta$.
12.If $\sin \theta=0.5033$, show that θ is approximately $30^{\circ} 13^{\prime} 6^{\prime \prime}$.
12. Separate into real and imaginary parts $\tan ^{-1}(x+i y)$
13. Prove thatsinh ${ }^{-1} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$.
14. Show that the matrix $\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ satisfies Cayley Hamilton theorem.
15. Find the characteristic roots of the matrix $=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
16. Prove that in an ellipse, the tangents at the extremities of a diameter are parallel to the chords bisected by the diameter.
17. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

PART-C
 Answer Any TWO Questions(2 X $20=40$)

19. a. If $\tan (x+i y)=u+i v$, prove that $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
b. Expand $\sin ^{3} \theta \cos ^{4} \theta$ in terms of sines of multiples of θ.
20. a. If $\tan (\alpha+i \beta)=x+i y$ prove that $x^{2}+y^{2}+2 x \cot 2 \alpha=1$
b. If $\log \sin (\theta+i \phi)=A+i B$, Show that
(i) $2 e^{2 A}=\cosh 2 \phi-\cos 2 \theta$
(ii) $\tanh \phi=\tan \theta \tan B$
21. Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$
22. a. A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose centre is C meets the circle $x^{2}+y^{2}=a^{2}+b^{2}$ at Q and Q^{\prime}. Prove that CQ and CQ' are conjugate diameters of the ellipse.
b. Find the locus of the foot of the perpendiculars drawn from the pole to the tangents
to the circle $r=2 a \cos \theta$
$(10+10)$
