

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER - NOVEMBER 2017

MT 1100 - MATHEMATICS FOR PHYSICS

Date: 07-11-2017 Time: 01:00-04:00 Dept. No. Max.: 100 Marks

SECTION A

ANSWER ALL THE QUESTIONS:

(10x2 = 20)

- 1) Find the nth derivative of y = cos(ax + b).
- 2) Write down the formula for subtangent and subnormal in polar coordinates.
- 3) Write the expansion of log(1+x).
- 4) Define rank of the matrix.
- 5) State the formula for Laplace transformation of a periodic function.
- 6) Find the value of $L^{-1}\left(\frac{1}{(s+2)^2+16}\right)$.
- 7) Write down the expansion for $\tan n_{\pi}$.
- 8) Show that $\cosh^2 \pi \sinh^2 \pi = 1$.
- 9) Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 8.
- 10) Define Normal distribution.

SECTION B

ANSWER ANY FIVE QUESTONS:

(5x8 = 40)

- 11) Find the angle of intersection of cardioids $r = a(1 + \cos_{\pi})$ and $r = b(1 \cos_{\pi})$.
- 12) Determine the maxima and minima of $x^5 5x^4 + 5x^3 + 10$.
- 13) Find the sum to infinity of the series $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$
- 14) Verify Cayley Hamilton theorem for $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.
- 15) Find L[f(t)] if $f(t) = \begin{cases} (t-1)^2, when & t > 1 \\ 0, when & t < 1 \end{cases}$.
- 16) Find $L^{-1}\left(\frac{1}{(s+1)(s^2+2s+2)}\right)$.
- 17) Write down the expansion of $\cos 6_n$ in terms of \cos_n .
- 18) An urn contains 6 white, 4 red and 9 black balls. If 3 balls are drawn at random, find the probability that: (i) two of the balls are drawn white, (ii) one is of each colour, (iii) none is red, (iv) at least one is white.

SECTION C

ANSWER ANY TWO QUESTIONS:

(2x20 = 40)

- 19) a) If $y = \sin(m\sin^{-1}x)$, Prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.
 - b) Find the nth differential coefficient of $\cos x \cdot \cos 2x \cdot \cos 3x$.

- 20) a) Find the characteristic values and characteristic vectors of the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.
 - b) Sum the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots$

(10+10)

- 21) a) Express $\cos^5 \sin^3$ in terms of sines of multiples of .
 - b) Separate into real and imaginary parts of $tan^{-1}(+i)$.

(10+10)

- 22) a) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = \sin t$ given that $y = \frac{dy}{dt} = 0$ when t = 0 using Laplace transform.
 - b) Calculate the mean for the following table giving the age distribution of 542 students.

Age (in years)	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of members	3	61	132	153	140	51	2

(14+6)

\$\$\$\$\$\$\$\$