LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
B.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – NOVEMBER 2017			
Date: 14-11-2017 Dept. No. Max. : 100 Marks Time: 01:00-04:00			
PART-A			
Answer all the questions(10 x 2=20)			
1. Find the n th derivative of $y = log(ax + b)$			
2. Find the sub tangent and subnormal of the parabola $y^2 = 4ax$.			
3. What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1,1)?			
4. Define involute.			
5. Find the equation, with rational coefficients one of whose roots is $\sqrt{5} + \sqrt{2}$.			
6. Calculate the sum of the cubes of the roots of the equation $x^4 + 2x + 3 = 0$			
7. Show that $\cosh^2 x - \sinh^2 x = 1$.			
8. Write down the expansion for $\cos n_{\pi}$.			
9. Write the polar equation of a conic.			
10. Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$.			
PART - B			
Answer any FIVE questions: (5 X 8 = 40)			
11. Find the n^{th} differential coefficient of $\cos x . \cos 2x . \cos 3x$.			
12. Find the slope of the tangent with the initial line for the cardioid $r = a(1 - \cos \pi)$ at $\pi = \frac{f}{6}$.			
13. Prove that the radius of curvature at any point of the cycloid $x = a(x + \sin x)$ and $y = a(1 - \cos x)$			
is $4a\cos\frac{\pi}{2}$.			
14. Solve the equation $27x^3 + 42x^2 - 28x - 8 = 0$ whose roots are in G.P.			
15. Express $\frac{\sin 6_n}{\sin n}$ in terms of $\cos n$.			
16. Separate into real and imaginary parts $\tan^{-1}(x+iy)$.			
17. If <i>P</i> and <i>Q</i> are extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and <i>S</i> is a focus, then			
prove that $PQ^2 - (SP - SQ)^2 = 2b^2$.			
18. Show that in a conic the semi-latus rectum is the harmonic mean between the segments of a focal chord.			

Ans	Swer any TWO questions:	(2 x 20=40)
19.	If $y = \sin(m\sin^{-1} x)$, prove that $(1 - x^2)y_2 - xy_1 + m^2 y = 0$ and	
	$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$	
20.	a) For the curves $x^2 = 4y$ and $y^2 = 4x$, find the angle of intersection.	
	b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(10+10)
21.	Solve the equation $6x^6 - 35x^5 + 56x^4 - 56x^2 + 35x - 6 = 0$.	
22.	a) Sum to infinity the series $\cos r + \frac{1}{2}\cos(r+s) + \frac{1}{2}\cdot\frac{3}{4}\cos(r+2s) + \dots$	
	b) If <i>e</i> and <i>e</i> ₁ are two extremities of hyperbola and its conjugate show that $\frac{1}{e^2} + \frac{1}{e_1^2} = \frac{1}{e_1^2}$	=1 (10+10)

```
*******
```