LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS FIRST SEMESTER - NOVEMBER 2017

\square Max. : 100 Marks
Time: 01:00-04:00

PART-A

Answer all the questions

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{y}=\log (\mathrm{ax}+\mathrm{b})$
2. Find the sub tangent and subnormal of the parabola $y^{2}=4 \mathrm{ax}$.
3. What is the radius of curvature of the curve $x^{4}+y^{4}=2$ at the point $(1,1)$?
4. Define involute.
5. Find the equation, with rational coefficients one of whose roots is $\sqrt{5}+\sqrt{2}$.
6. Calculate the sum of the cubes of the roots of the equation $x^{4}+2 x+3=0$
7. Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
8. Write down the expansion for $\cos n \theta$.
9. Write the polar equation of a conic.
10. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

PART - B

Answer any FIVE questions:
11. Find the $n^{\text {th }}$ differential coefficient of $\cos x \cdot \cos 2 x \cdot \cos 3 x$.
12. Find the slope of the tangent with the initial line for the cardioid $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{6}$.
13. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ is $4 a \cos \frac{\theta}{2}$.
14. Solve the equation $27 x^{3}+42 x^{2}-28 x-8=0$ whose roots are in G.P.
15. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
16. Separate into real and imaginary parts $\tan ^{-1}(x+i y)$.
17. If P and Q are extremities of two conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and S is a focus, then prove that $P Q^{2}-(S P-S Q)^{2}=2 b^{2}$.
18. Show that in a conic the semi-latus rectum is the harmonic mean between the segments of a focal chord.

PART - C

Answer any TWO questions:
19. If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$
20. a) For the curves $x^{2}=4 y$ and $y^{2}=4 x$, find the angle of intersection.
b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
21. Solve the equation $6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$.
22. a) Sum to infinity the series $\cos \alpha+\frac{1}{2} \cos (\alpha+\beta)+\frac{1}{2} \cdot \frac{3}{4} \cos (\alpha+2 \beta)+\ldots$
b) If e and e_{l} are two extremities of hyperbola and its conjugate show that $\frac{1}{e^{2}}+\frac{1}{e_{1}^{2}}=1$

