Date: 14-11-2017

B.Sc.DEGREE EXAMINATION -MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2017
 MT 1502 - ALGEBRA AND CALCULUS - I

Time: 01:00-04:00

Dept. No. \square

PART- A

Answer ALL Questions (10 $\times 2=20$)

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $\sin x$.
2. Find the polar subtangent of the curve $r=e^{\theta \cot \alpha}$.
3. Write down the conditions for maxima and minima of functions of two variables.
4. Define curvature of a curve at a point on the curve..
5. Find the radius of curvature at $(1,1 / 2)$ on the curve $2 y=x\left(1-x+x^{2}\right)$..
6. Define evolute and involute of a curve.
7. Form a rational cubic equation which shall have roots $1,3-\sqrt{-2}$.
8. Write the condition for the roots of the equation to be in harmonic progression.
9. Show that the equation $x^{7}-3 x^{4}+2 x^{3}-1=0$ has at least four imaginary roots.
10. If α, β, γ are the roots of the equation $x^{3}+6 x^{2}+11 x+6=0$ form the equation whose roots

$$
\text { are } \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} \text {. }
$$

PART- B

Answer any FIVE questions($5 \times 8=40$)
11. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$. Hence show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0
$$

12.Find the maximum and minimum values of the function $f(x, y)=x^{2} y^{2}-x^{2}-y^{2}$.
13. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ is $4 \operatorname{acos} \frac{\theta}{2}$.
14. Find the radius of curvature at the point t in the parabola $y^{2}=4 a x$ and deduce the equation of the evolute.
15. Solve $x^{4}+4 x^{3}+5 x^{2}+2 x-2=0$, given that one root is $-1+\mathrm{i}$.
16.If the roots of $x^{3}+p x^{2}+q x+r=0$ are in A.P, show that $2 p^{3}-9 p q+27 r=0$.
17. Discuss the nature of the roots of $x^{4}+4 x^{3}-2 x^{2}-12 x+a=0$ for all real values of a.
18. Find the asymptotes of the cubic equation $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.

PART- C
 Answer any TWO questions ($2 \times 20=40$)

19 (a) State and prove Leibnitz formula for the $\mathrm{n}^{\text {th }}$ derivative of a product of two functions.
(b) Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$

20 (a) If $u=a^{3} x^{2}+b^{3} y{ }^{2}+c^{3} z^{2}$ where $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$, find the minimum value of u.
(b) From the polar equation of the parabola show that $\rho^{2}=a r$.
21. (a) Show that the sum of the eleventh powers of the roots of $x^{7}+5 x^{4}+1=0$ is zero.
(b) Solve the reciprocal equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.
22. Using Horner's method find the root of the equation $x^{3}-3 x+1=0$ which lies between 1 and 2 correct to two decimal places.

