B.Sc.DEGREE EXAMINATION -MATHEMATICS FIRST SEMESTER - NOVEMBER 2017 MT 1503- ANALYTICAL GEOMETRY OF 2D,TRIG. & MATRICES		
Date: 04-11-2017 Dept. No Time: 01:00-04:00).	Max. : 100 Marks
<u>PART – A</u>		
ANSWER ALL THE QUESTIONS:	(10 × 2	2 = 20 marks)
 Write the expansion of tan 4θ in powers of tan θ. If x = cos θ + i sin θ, then find xⁿ + ¹/_{xⁿ} and xⁿ - ¹/_{xⁿ}. Prove that cosh²x - sinh²x = 1. Find the general value of logarithm of x + iy. Define a singular matrix and a symmetric matrix with an example. Find A⁴ using characteristic equation of Awhen A = [-1 2 - 1 4]. Show that the perpendicular tangents to a parabola intersect on the directrix. State any two properties of conjugate diameters. Define rectangular hyperbola. Define polar coordinates. 		
<u> PART - B</u>		
ANSWER ANY FIVE QUESTIONS:	(5	× 8 = 40 marks)
11. Prove that $\cos^5\theta \sin^3\theta = \frac{-1}{128} (\sin 8\theta - 12)$. Evaluate $\lim_{x \to \frac{\pi}{2}} \left(\frac{\sin x + \cos 2x}{\cos^2 x} \right)$	⊦ 2sin 6θ – 2sin 4θ – 6sin 2	2θ)
13. If $\cos(x + iy) = \cos \theta + 1 \sin \theta$, then prove that $\cos 2x + \cosh 2y = 2$. 14. Deduce the expansion of $\tan^{-1}x$ in powers of x from the expansion of $\log(a + ih)$.		
15. Verify the following matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	satisfies its characteristic ed	quation.
16. Find the locus of the mid-points of chords of a parabola subtending a right angle at the vertex of a parabola.		
 17. (a) Find the locus of the middle points (b) When will the tangents at the extre 18. The asymptotes of a hyperbola are par and it passes through the point (5,3). 	of a series of parallel chords mities of a chord intersect on allel to $2x + 3y = 0$ and $3x$ Find its equation and its conju	of an ellipse. (5+3) the diameter bisecting the chord. -2y = 0. Its centre is at (1,2) agate.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

PART – C

ANSWER ANY TWO QUESTIONS:

$(2 \times 20 = 40 \text{ marks})$

19. (a) Express $\cos 8\theta$ in terms of $\sin \theta$.

(b) Expand $\sin^2 \theta$ in a series of sines of multiples of θ .

- 20. (a) If $\cos \alpha \cosh \beta = \cos \emptyset$, $\sin \alpha \sinh \beta = \sin \emptyset$, then prove that $\sin \emptyset = \pm \sin^2 \alpha = \pm \sinh^2 \beta(10)$
 - (b) Separate into real and imaginary parts of $tan^{-1}(x + iy)$ (10)

21. Diagonalize the matrix
$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$$
.(20)

22. (a) Show that the locus of the intersection of tangents to $y^2 = 4ax$ which intercept a constant length don the directrix is $(y^2 - 4ax)(x + a)^2 = d^2x^2$. (12)

(b) Trace the curve $\frac{12}{r} = 4 + \sqrt{3}\cos\theta + \sin\theta$.

(08)