LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIRST SEMESTER - NOVEMBER 2017
MT 1503- ANALYTICAL GEOMETRY OF 2D,TRIG. \& MATRICES

Date: 04-11-2017
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

$\underline{\text { PART - A }}$

ANSWER ALL THE QUESTIONS:

$$
(10 \times 2=20 \text { marks })
$$

1. Write the expansion of $\tan 4 \theta$ in powers of $\tan \theta$.
2. If $x=\cos \theta+i \sin \theta$, then find $x^{n}+\frac{1}{x^{n}}$ and $x^{n}-\frac{1}{x^{n}}$.
3. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
4. Find the general value of logarithm of $x+i y$.
5. Define a singular matrix and a symmetric matrix with an example.
6. Find A^{4} using characteristic equation of A when $A=\left[\begin{array}{ll}-1 & 2 \\ -1 & 4\end{array}\right]$.
7. Show that the perpendicular tangents to a parabola intersect on the directrix.
8. State any two properties of conjugate diameters.
9. Define rectangular hyperbola.
10. Define polar coordinates.

PART - B

ANSWER ANY FIVE QUESTIONS:
11. Prove that $\cos ^{5} \theta \sin ^{3} \theta=\frac{-1}{128}(\sin 8 \theta+2 \sin 6 \theta-2 \sin 4 \theta-6 \sin 2 \theta)$
12. Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sin \mathrm{x}+\cos 2 \mathrm{x}}{\cos ^{2} \mathrm{x}}\right)$
13. If $\cos (x+i y)=\cos \theta+i \sin \theta$, then prove that $\cos 2 x+\cosh 2 y=2$.
14. Deduce the expansion of $\tan ^{-1} x$ in powers of x from the expansion of $\log (a+i b)$.
15. Verify the following matrix $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ satisfies its characteristic equation.
16. Find the locus of the mid-points of chords of a parabola subtending a right angle at the vertex of a parabola.
17. (a) Find the locus of the middle points of a series of parallel chords of an ellipse.
(b) When will the tangents at the extremities of a chord intersect on the diameter bisecting the chord.
18. The asymptotes of a hyperbola are parallel to $2 x+3 y=0$ and $3 x-2 y=0$. Its centre is at $(1,2)$ and it passes through the point $(5,3)$. Find its equation and its conjugate.

$\underline{\text { PART - C }}$

ANSWER ANY TWO QUESTIONS:
19. (a) Express $\cos 8 \theta$ in terms of $\sin \theta$.
(b) Expand $\sin ^{7} \theta$ in a series of sines of multiples of θ.
20. (a) If $\cos \alpha \cosh \beta=\cos \emptyset, \sin \alpha \sinh \beta=\sin \emptyset$, then prove that $\sin \emptyset= \pm \sin ^{2} \alpha= \pm \sinh ^{2} \beta(\mathbf{1 0})$
(b) Separate into real and imaginary parts of $\tan ^{-1}(x+i y)(\mathbf{1 0)}$
21. Diagonalize the matrix $\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$.(20)
22. (a) Show that the locus of the intersection of tangents to $y^{2}=4 a x$ which intercept a constant length d on the directrix is $\left(y^{2}-4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
(b) Trace the curve $\frac{12}{r}=4+\sqrt{3} \cos \theta+\sin \theta$.

