MT 3103- MATHEMATICS FOR CHEMISTRY

\square

Section A

Answer ALL questions:

1. What is the differential coefficient of $\cos x$?
2. If $y=e^{x}+\log x$, find $\frac{d y}{d x}$.
3. Integrate $x^{-4}+a x$ with respect to x.
4. Write any two properties of definite integrals.
5. Expand $\log \left(\frac{1+x}{1-x}\right)$.
6. Find the characteristic roots of the matrix $A=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$.
7. Expand $\sin n \theta$ in powers of $\cos \theta$ and $\sin \theta$.
8. Find the real and imaginary parts of $\sin (\theta+i \varnothing)$.
9. What is the chance that a leap year selected at random will contain 53 Sundays?
10. Define the probability mass function of binomial distribution.

Section B

Answer any FIVE questions:

$$
(5 \times 8=40)
$$

11. Find the differential coefficient of $\frac{(a-x)^{2}(b-x)^{3}}{(c-2 x)^{3}}$.
12. Find the equation of the tangent to the curve $y=\frac{6 x}{x^{2}-1}$ at the point $(2,4)$.
13. Evaluate $\int \frac{2 x+3}{x^{2}+x+1} d x$.
14. Show that $\int_{0}^{\pi / 2} \frac{(\sin x)^{3 / 2}}{(\sin x)^{3 / 2}+(\cos x)^{3 / 2}} d x=\frac{\pi}{4}$.
15. If a, b, c denote three consecutive integers show that

$$
\log b=\frac{1}{2} \log a+\frac{1}{2} \log c+\frac{1}{2 a c+1}+\frac{1}{3(2 a c+1)^{3}}+\frac{1}{5(2 a c+1)^{5}}+\cdots \infty
$$

16. Find the sum to infinity of the series $1+\frac{2^{3}}{2!}+\frac{3^{3}}{3!}+\cdots$.
17. Prove thatcos $5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$.
18. A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which (i) neither car is used and (ii) some demand is refused.

Section C

Answer any TWO questions:

19. (a) Find the maxima and minima of the function $2 x^{3}-3 x^{2}-36 x+10$.
(b) Differentiate $y=x e^{x} \cos x$.
20. (a) Evaluate $\int \frac{x}{(x-1)(x-2)(x-3)} d x$.
(b) Find the sum to infinity of the series $\frac{2 \cdot 4}{3 \cdot 6}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 6 \cdot 9}+\frac{2 \cdot 4 \cdot 6 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}+\cdots$.
21. (a) If $\sin (A+i B)=x+i y$, prove that (i) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$ (ii) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$.
(b) Find the characteristic roots and the characteristic vectors of the matrix

$$
A=\left[\begin{array}{rrr}
2 & 2 & 0 \tag{8+12}\\
2 & 1 & 1 \\
-7 & 2 & -3
\end{array}\right]
$$

22. (a).Two unbiased dice are thrown. Find the probability that:
(i) both the dice show the same number
(ii) the first die shows 6
(iii) the total of the numbers on the dice is 8
(iv) the total of the numbers on the dice is greater than 8 .
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age (in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of Members	3	61	132	153	140	51	2

$$
(8+12)
$$

\$ $\$ \mathbf{\$} \$ \mathbf{\$} \$$

