LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – BUSI.ADMIN., & B.COM. CORP.

THIRDSEMESTER – NOVEMBER 2017

MT 3209- BASIC MATHEMATICS

Date: 15-11-2017 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

Part A

(Answer ALL the questions) $(2 \times 10 = 20)$

- 1. Define Total Revenue function.
- 2. Find the equilibrium price given

$$Q_d = \frac{8p}{p-2} \quad ; \quad Q_s = p^2 \, .$$

3. Find the slope and the inclination of the line joining (-4,8) and (8,-4)

4. If
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix}$$
, find *AB* and *BA*

- 5. Define optimum solution.
- 6. What percent of 2.4 is 8 gms?
- 7. Define Transportation problem.
- 8. What total amount would a person get at the end of three years if he invests an amount of Rs 4500 at 11% per annum for 3 years.
- 9. Find the value of 45% of 750 25% of 480.
- 10. Write the formula of Spearman's rank correlation coefficient..

Part B

(Answer any FIVE questions)($5 \times 8 = 40$)

- 11. a) Find the equation of the line whose intercept on the y-axis is 6 and which passes through the point (4,-2).
 - b) Find the intercept of the equation x + 2y = 3. (4+4)

12. Prove that $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3.$

13. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ and hence find A^{-1} .

14. Find the initial basic feasible solution to the following transportation problem by North-West Corner Rule.

		Market						Availability
		M1	M2	M3	M4	M5	M6	
Warehouse	W1	9	12	9	6	9	10	5
	W2	7	3	7	7	5	5	6
	W3	6	5	9	11	3	11	2
	W4	6	5	9	11	3	11	2
	W5	6	8	11	2	2	10	9
Demand		6	4	6	2	4	2	

15. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows.

			Job			
		1	2	3	4	5
	А	8	4	2	6	1
	В	0	9	5	5	4
Person	С	3	8	9	2	6
	D	4	3	1	0	3
	Е	9	5	8	9	5

Determine the optimum assignment schedule.

- 16. Find the matrix B such that $A^2 + 3A + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, where $A = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}$.
- 17. A father is three times as old as his son. 12 years later the father becomes twice older than his son. What is the present age of the father.
- 18. Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Years							
Number of	3	61	132	153	140	51	2
members							

Find the standard deviation, coefficient of variance and variance for the following data.

Part C (Answer any TWO questions) (2 x 20 = 40)

19. (a) Find the equation to the straight line passing through the points (2,-3) and perpendicular to the line x - 2y = 3.

b). Define Equilibrium .Find the equilibrium price by the method of excess demand given the

functions
$$Q_d = 50 - \frac{8p}{7}$$
; $Q_s = 10 + \frac{2p}{3}$.

c) If $f(x) = x^2 - 7x + 12$ find f(x+2) - f(x+1) + f(x-1)

(7+6+7)

Warehouse

20. (a) Find the inverse of the matrix $A = \begin{pmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{pmatrix}$

b). Solve by using Cramer's rule

$$\frac{2x - 3y = 3}{4x - y = 11}$$
(14+6)

21. (a) Determine the initial basic feasible solution to the following transportation problem by using Least Cost Method.

Μ	arket					
		M1	M2	M3	M4	
	W1	10	20	5	7	10
	W2	13	9	12	8	20
	W3	4	5	7	9	30
	W4	14	7	1	0	40
	W5	3	12	5	19	50
	Demand	60	60	20	10	-

b) In an evaluation of answer script the following marks were awarded by the examiners

1 st	88	60	94	50	89	75	65	54	63	40
2^{nd}	90	65	85	53	85	78	69	59	61	43

Calculate the Spearman's rank correlation coefficient.

(10+10)

22 a) Solve the following LPP by graphical method:

Maximize $z = 5x_1 + 4x_2$ Subject to the constraints : $1.5x_1 + 2.5x_2 \le 80$ $2x_1 + 1.5x_2 \le 70$ $x_1, x_2 \ge 0$

b). A,B and C started a business by investing Rs. 1,20,000, Rs. 1,35,000 and Rs. 1,50,000 respectively. Find the share of each , out of an annual proft of Rs. 56,700.

c). A book was sold for Rs.27.50 with a profit of 10%. If it were sold for Rs. 25.7, then what would have been the percentage of profit or loss?

\$\$\$\$\$\$\$